Publications by authors named "Angelo Moreno"

Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo-a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation.

View Article and Find Full Text PDF

Biopharmaceuticals have become increasingly attractive therapeutic agents and are often PEGylated to enhance their pharmacokinetics and reduce their immunogenicity. However, recent human clinical trials have demonstrated that administration of PEGylated compounds can evoke anti-PEG antibodies. Considering the ubiquity of PEG in commercial products and the presence of pre-existing anti-PEG antibodies in patients in large clinical trials evaluating a PEG-modified aptamer, we investigated how anti-PEG antibodies effect the therapeutic activities of PEGylated RNA aptamers.

View Article and Find Full Text PDF

Nucleic acid binding polymers (NABPs) have been extensively used as vehicles for DNA and RNA delivery. More recently, we discovered that a subset of these NABPs can also serve as anti-inflammatory agents by capturing pro-inflammatory extracellular nucleic acids and associated protein complexes that promote activation of toll-like receptors (TLRs) in diseases such as lupus erythematosus. Nucleic-acid-mediated TLR signaling also facilitates tumor progression and metastasis in several cancers, including pancreatic cancer (PC).

View Article and Find Full Text PDF

Trauma patients produce a host of danger signals and high levels of damage-associated molecular patterns (DAMPs) after cellular injury and tissue damage. These DAMPs are directly and indirectly involved in the pathogenesis of various inflammatory and thrombotic complications in patients with severe injuries. No effective therapeutic agents for the removal of DAMPs from blood or tissue fluid have been developed.

View Article and Find Full Text PDF

Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified.

View Article and Find Full Text PDF

Culture-independent molecular characterization of infecting Leptospira human blood specimens from a 2008 outbreak of human leptospirosis in central Sri Lanka was carried out. Of 58 quantitative real-time polymerase chain reaction-positive samples analyzed for seven multi-locus sequence typing (MLST) housekeeping genes (mreA, pfkB, pntA, sucA, tpiA, fadD, and glmU), interpretable data was obtained from 12 samples. Mean bacterial load was 2.

View Article and Find Full Text PDF
Article Synopsis
  • The whole genome analysis of two Leptospira licerasiae strains reveals insights into their potential pathogenicity and evolutionary history among leptospiral species.
  • A comparative study of eight genomes identified a core set of 1547 genes, including 452 that are likely related to pathogenicity, highlighting L. licerasiae's ability to thrive in laboratory environments due to its retention of specific metabolic proteins.
  • The presence of unique genomic features, such as two prophage elements and a short O-antigen locus, suggests L. licerasiae can exchange genes through lateral gene transfer, indicating its closer genetic relationship to pathogenic Leptospira than to non-infectious species.
View Article and Find Full Text PDF

Background: Quantitative polymerase chain reaction (qPCR), despite cost and logistical challenges, has the potential to provide accurate and timely diagnosis for leptospirosis at the point-of-care in endemic areas. We studied optimal sample types for qPCR, timing of sampling, and clinical manifestations in relation to quantitative leptospiremia.

Methods: A new qPCR assay using pathogenic Leptospira-specific 16S ribosomal RNA (rRNA) gene Taqman primers and an optimized temperature stepdown protocol was used to analyze patient blood samples.

View Article and Find Full Text PDF