The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases.
View Article and Find Full Text PDFBackground: Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes.
View Article and Find Full Text PDFA critical review of three paradoxical phenomena, occurring in the dynamic stability of finite-dimensional autonomous mechanical systems, is carried out. In particular, the well-known destabilization paradoxes of Ziegler, due to damping, and Nicolai, due to follower torque, and the less well known failure of the so-called 'principle of similarity', as a control strategy in piezo-electro-mechanical systems, are discussed. Some examples concerning the uncontrolled and controlled Ziegler column and the Nicolai beam are discussed, both in linear and nonlinear regimes.
View Article and Find Full Text PDFPurpose: To retrospectively evaluate positron emission tomography (PET)/magnetic resonance (MR) enterography for the differentiation of fibrotic strictures from inflammatory strictures in patients with Crohn disease.
Materials And Methods: This HIPAA-compliant retrospective study was approved by the institutional review board. Patients gave their written informed consent for study enrollment.
Purpose: To compare the performance of PET/MRI imaging using MR attenuation correction (MRAC) (DIXON-based 4-segment -map) in breast cancer patients with that of PET/CT using CT-based attenuation correction and to compare the quantification accuracy in lesions and in normal organ tissues.
Methods: A total of 36 patients underwent a whole-body PET/CT scan 1h after injection and an average of 62 min later a second scan using a hybrid PET/MRI system. PET/MRI and PET/CT were compared visually by rating anatomic allocation and image contrast.