Comput Med Imaging Graph
September 2024
Over the past decade, deep-learning (DL) algorithms have become a promising tool to aid clinicians in identifying fetal head standard planes (FHSPs) during ultrasound (US) examination. However, the adoption of these algorithms in clinical settings is still hindered by the lack of large annotated datasets. To overcome this barrier, we introduce FetalBrainAwareNet, an innovative framework designed to synthesize anatomically accurate images of FHSPs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
The identification of fetal-head standard planes (FHSPs) from ultrasound (US) images is of fundamental importance to visualize cerebral structures and diagnose neural anomalies during gestation in a standardized way. To support the activity of healthcare operators, deep-learning algorithms have been proposed to classify these planes. To date, the translation of such algorithms in clinical practice is hampered by several factors, including the lack of large annotated datasets to train robust and generalizable algorithms.
View Article and Find Full Text PDF