Publications by authors named "Angelo Karunaratne"

Bone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture.

View Article and Find Full Text PDF

We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture.

View Article and Find Full Text PDF

Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load.

View Article and Find Full Text PDF

Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known.

View Article and Find Full Text PDF

Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear.

View Article and Find Full Text PDF

Osteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks.

View Article and Find Full Text PDF

Radiological features alone do not allow the discrimination between accidental paediatric long bone fractures or those sustained by child abuse. Therefore, there is a clinical need to elucidate the mechanisms behind each fracture to provide a forensic biomechanical tool for the vulnerable child. Four-point bending and torsional loading tests were conducted at more than one strain rate for the first time on immature bone, using a specimen-specific alignment system, to characterise structural behaviour at para-physiological strain rates.

View Article and Find Full Text PDF

Bone is a complex hierarchical structure, and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence, analysis of their specific roles in bone strength and stiffness is difficult.

View Article and Find Full Text PDF

The material properties of ligaments are not well characterized at rates of deformation that occur during high-speed injuries. The aim of this study was to measure the material properties of lateral collateral ligament of the porcine stifle joint in a uniaxial tension model through strain rates in the range from 0.01 to 100/s.

View Article and Find Full Text PDF

Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure-property relationships of the egg case from the molecular to the macroscopic scale.

View Article and Find Full Text PDF

In situ synchrotron X-ray scattering and diffraction, in combination with micromechanical testing, can provide quantitative information on the nanoscale mechanics of biomineralized composites, such as bone, nacre, and enamel. Due to the hierarchical architecture of these systems, the methodology for extraction of mechanical parameters at the molecular and supramolecular scale requires special considerations regarding design of mechanical test apparatus, sample preparation and testing, data analysis, and interpretation of X-ray structural information in terms of small-scale mechanics. In this chapter, this methodology is described using as a case study the deformation mechanisms at the fibrillar and mineral particle level in cortical bone.

View Article and Find Full Text PDF

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization.

View Article and Find Full Text PDF