Background: Crohn's disease (CD) significantly affects patients' health-related quality of life and well-being.
Aims: Communicating Needs and Features of IBD Experiences (CONFIDE) survey explores the experience and impact of moderate-to-severe CD symptoms on patients' lives and identifies communication gaps between patients and health care professionals (HCPs).
Methods: Online, quantitative, cross-sectional surveys of patients, and HCPs were conducted in the United States (US), Europe (France, Germany, Italy, Spain, United Kingdom), and Japan.
In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures.
View Article and Find Full Text PDFIn this study, we report on a virtual ligand screening protocol optimized to identify fragments endowed with activity at multiple targets. Thanks to this protocol, we were able to identify a fragment that displays activity in the low-micromolar range at both β-secretase 1 (BACE-1) and glycogen synthase kinase 3β (GSK-3β). These two structurally and physiologically unrelated enzymes likely contribute, through different pathways, to the onset of Alzheimer's disease (AD).
View Article and Find Full Text PDFThe design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively.
View Article and Find Full Text PDFCumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimer's disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3β.
View Article and Find Full Text PDFExpert Opin Drug Discov
April 2013
Introduction: It has long been considered that the most significant risks for breast cancer are gender and age but, as many other tumors, this cancer has also been undeniably linked to gene mutations. The vast majority of breast cancers in postmenopausal women are estrogen-responsive, a hormone which is biosynthesized from blood-circulating androgens through an aromatization reaction, catalyzed by aromatase (AR). One strategy, therefore, to combat breast cancer, has been to find compounds that can inhibit the activity of aromatase to reduce estrogen levels.
View Article and Find Full Text PDFFragment-based methods have emerged in the last two decades as alternatives to traditional high throughput screenings for the identification of chemical starting points in drug discovery. One arguable yet popular assumption about fragment-based design is that the fragment binding mode remains conserved upon chemical expansion. For instance, the question of the binding conservation upon fragmentation of a molecule is still unclear.
View Article and Find Full Text PDFPain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH).
View Article and Find Full Text PDFIn humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing.
View Article and Find Full Text PDFOur main objective was to compile a data set of high-quality protein-fragment complexes and make it publicly available. Once assembled, the data set was challenged using docking procedures to address the following questions: (i) Can molecular docking correctly reproduce the experimentally solved structures? (ii) How thorough must the sampling be to replicate the experimental data? (iii) Can commonly used scoring functions discriminate between the native pose and other energy minima? The data set, named SERAPhiC (Selected Fragment Protein Complexes), is publicly available in a ready-to-dock format ( http://www.iit.
View Article and Find Full Text PDFPolypharmacology-based strategies are gaining increased attention as a novel approach to obtaining potentially innovative medicines for multifactorial diseases. However, some within the pharmaceutical community have resisted these strategies because they can be resource-hungry in the early stages of the drug discovery process. Here, we report on fragment-based and computational methods that might accelerate and optimize the discovery of multitarget drugs.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of a series of new aromatase (AR, CYP19) inhibitors bearing an imidazole ring linked to a 7-substituted coumarin scaffold at position 4 (or 3) are reported. Many compounds exhibited an aromatase inhibitory potency in the nanomolar range along with a high selectivity over 17-α-hydroxylase/C17-20 lyase (CYP17). The most potent AR inhibitor was the 7-(3,4-difluorophenoxy)-4-imidazolylmethyl coumarin 24 endowed with an IC(50) = 47 nM.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2011
The basic idea behind ligand-based approaches is that the analysis of sets of molecules with experimentally determined activities can highlight those chemical features responsible for the activity changes. Historically, such approaches have been devised before structure-based methods. Nowadays, despite the ever increasing availability of experimentally determined structures, ligand-based approaches still play a major role in drug design either alone or in conjunction with structure-based efforts.
View Article and Find Full Text PDFMost function prediction methods that identify cognate ligands from binding site analyses work on the assumption of molecular complementarity. These approaches build on the conjectured complementarity of geometrical and physicochemical properties between ligands and binding sites so that similar binding sites will bind similar ligands. We found that this assumption does not generally hold for protein-ligand interactions and observed that it is not the chemical composition of ligand molecules that dictates the complementarity between protein and ligand molecules, but that the ligand's share within the functional mechanism of a protein determines the degree of complementarity.
View Article and Find Full Text PDFMolecular recognition between proteins and their interacting partners underlies the biochemistry of living organisms. Specificity in this recognition is thought to be essential, whereas promiscuity is often associated with unwanted side effects, poor catalytic properties and errors in biological function. Recent experimental evidence suggests that promiscuity, not only in interactions but also in the actual function of proteins, is not as rare as was previously thought.
View Article and Find Full Text PDFHuman carbonyl reductase is a member of the short-chain dehydrogenase/reductase (SDR) protein superfamily and is known to play an important role in the detoxification of xenobiotics bearing a carbonyl group. The two monomeric NADPH-dependent human isoforms of cytosolic carbonyl reductase CBR1 and CBR3 show a sequence similarity of 85% on the amino acid level, which is definitely high if compared to the low similarities usually observed among other members of the SDR superfamily (15-30%). Despite the sequence similarity and the similar features found in the available crystal structures of the two enzymes, CBR3 shows only low or no activity towards substrates that are metabolised by CBR1.
View Article and Find Full Text PDFShort-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with presently over 46,000 members. In phylogenetic comparisons, members of this superfamily show early divergence where the majority have only low pairwise sequence identity, although sharing common structural properties. The SDR enzymes are present in virtually all genomes investigated, and in humans over 70 SDR genes have been identified.
View Article and Find Full Text PDFMol Cell Endocrinol
March 2009
The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone to the active glucocorticoid cortisol, thereby acting as a cellular switch to mediate glucocorticoid action in many tissues. Several studies have indicated that 11beta-HSD1 plays a crucial role in the onset of type 2 diabetes and central obesity. As a consequence, selective inhibition of 11beta-HSD1 in humans might become a new and promising approach for lowering blood glucose concentrations and for counteracting the accumulation of visceral fat and its related metabolic abnormalities in type 2 diabetes.
View Article and Find Full Text PDFProtein ligand docking has recently been investigated as a tool for protein function identification, with some success in identifying both known and unknown substrates of proteins. However, identifying a protein's substrate when cross-docking a large number of enzymes and their cognate ligands remains a challenge. To explore a more limited yet practically important and timely problem in more detail, we have used docking for identifying the substrates of a single protein family with remarkable substrate diversity, the short-chain dehydrogenases/reductases.
View Article and Find Full Text PDFA new series of 3-, 4-, 7-polysubstituted coumarins have been designed and evaluated for their monoamine oxidase A and monoamine oxidase B (MAO-A and MAO-B) inhibitory potency. Substituents at position 7 consisted of a bridge of different physicochemical nature linking a phenyl ring to the coumarin scaffold. Structure-affinity and structure-selectivity relationships, derived through CoMFA-GOLPE and docking studies, revealed the key physicochemical interactions responsible for the observed MAO-B and MAO-A inhibitory potency and suggested the main structural determinants for high selectivity toward one of the two enzymatic isoforms.
View Article and Find Full Text PDFMammalian cytochromes P450 (CYP) are enzymes of great biological and pharmaco-toxicological relevance. Due to their membrane-bound nature, the structural characterization of these proteins is extremely difficult, and therefore computational techniques, such as comparative modeling, may help obtaining reliable structures of members of this family. An important feature of CYP is the presence of an iron-containing porphyrin group at the enzyme active site.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of a series of new aromatase inhibitors bearing an imidazole or triazole ring linked to a fluorene (A), indenodiazine (B), or coumarin scaffold (C) are reported. Properly substituted coumarin derivatives displayed the highest aromatase inhibitory potency and selectivity over 17-alpha-hydroxylase/17-20 lyase. The modeling of the aromatase inhibition data by Comparative Molecular Field Analysis (CoMFA/GOLPE 3D QSAR approach) led to the development of a PLS model with good fitting and predictive powers (n = 22, ONC = 3, r(2) = 0.
View Article and Find Full Text PDF