Publications by authors named "Angelo Di Garbo"

In 1976, Leon Chua showed that a thermistor can be modeled as a memristive device. Starting from this statement we designed a circuit that has four circuit elements: a linear passive inductor, a linear passive capacitor, a nonlinear resistor and a thermistor, that is, a nonlinear "locally active" memristor. Thus, the purpose of this work was to use a physical memristor, the thermistor, in a Muthuswamy-Chua chaotic system (circuit) instead of memristor emulators.

View Article and Find Full Text PDF

We present an experimental investigation of the complex dynamics of a modulated relaxation oscillator implemented by using a unipolar junction transistor (UJT) showing the transition to chaos through torus breakdown. In a previous paper a continuous model was introduced for the same system, explaining chaos based on analogy with a memristor. We propose here a new approach based on a piecewise linear model with delay considering a measured parasitic delay effect.

View Article and Find Full Text PDF

In this paper we studied a resonate and fire relaxation oscillator subject to time dependent modulation to investigate phase-locking phenomena occurring in neurophysiological systems. The neural model (denoted LFHN) was obtained by linearization of the FitzHugh-Nagumo neural model near an hyperbolic fixed point and then by introducing an integrate-and-fire mechanism for spike generation. By employing specific tools to study circle maps, we showed that this system exhibits several phase-locking patterns in the presence of periodic perturbations.

View Article and Find Full Text PDF

Local field potential (LFP) recordings were performed from the visual cortex (V1) of a focal epilepsy mouse model. Epilepsy was induced by a unilateral injection of the synaptic blocker tetanus neurotoxin (TeNT). LFP signals were simultaneously recorded from V1 of both hemispheres of each animal under acute and chronic conditions (i.

View Article and Find Full Text PDF

Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models.

View Article and Find Full Text PDF

Purpose: Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs.

View Article and Find Full Text PDF

The dynamics of the transcription bubble in DNA is studied by using a nonlinear model in which torsional and longitudinal conformations of the biomolecule are coupled. In the absence of forcing and dissipation the torsional dynamics is described by a perturbed kink of the Sine-Gordon DNA model, while the longitudinal conformational energy propagate as phonons. It was found that for random initial conditions of the longitudinal conformational field the presence of the kink promotes the creation of phonons propagating along the chain axis.

View Article and Find Full Text PDF

Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted.

View Article and Find Full Text PDF

A model of the DNA is proposed and studied analytically and numerically. The model is an extension of a well known model and describes the double helix as two chains of pendula (each pendulum representing a base). Each base (or pendulum) can rotate and translate along the helix axis.

View Article and Find Full Text PDF

Environmental enrichment (EE) is an experimental protocol based on a complex sensorimotor stimulation that dramatically affects brain development. While it is widely believed that the effects of EE result from the unique combination of different sensory and motor stimuli, it is not known whether and how cortico-cortical interactions are shaped by EE. Since the primary visual cortex (V1) is one of the best characterized targets of EE, we looked for direct cortico-cortical projections impinging on V1, and we identified a direct monosynaptic connection between motor cortex and V1 in the mouse brain.

View Article and Find Full Text PDF

The P2X(7) receptor (P2X(7)R) is an ATP-gated cation channel whose biophysical properties remain to be unravelled unequivocally. Its activity is modulated by divalent cations and organic messengers such as arachidonic acid (AA). In this study, we analysed the differential modulation of magnesium (Mg(2+)) and AA on P2X(7)R by measuring whole-cell currents and intracellular Ca(2+) ([Ca(2+)](i)) and Na(+) ([Na(+)](i)) dynamics in HEK293 cells stably expressing full-length P2X(7)R and in cells endowed with the P2X(7)R variant lacking the entire C-terminus tail (trP2X(7)R), which is thought to control the pore activation.

View Article and Find Full Text PDF

In this paper, a biophysical neural network model consisting of a pyramidal neuron, an interneuron, and the astrocyte is studied. The corresponding dynamical properties are mainly investigated by using numerical simulations. The results show that the presence of the adenosine triphosphate and of the interneuron impacts the overall neural activity.

View Article and Find Full Text PDF

Inhibitory interneurons are coupled by electrical and inhibitory synapses and exert a powerful control of the discharges of principal cells. In this paper, the transmission properties of excitatory synaptic inputs by a network of interneurons, are studied by using a computational approach. It is shown that both the rise and decay time constants, describing the time course of the excitatory synaptic inputs, have a strong effect on the output jitter of the fired spikes.

View Article and Find Full Text PDF

The transmission of excitatory inputs by inhibitory networks of different sizes is investigated by means of numerical simulations. The interneurons are coupled by electrical and/or inhibitory synapses and each of them receives an excitatory pulse at a random time. The pulse times are extracted from a Gaussian distribution and each cell model is subject to an independent noisy current.

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy (MTLE) is often the result of an early insult that induces a reorganization in hippocampal circuitry leading, after a latent period, to chronic epilepsy. Hippocampal rearrangements during the latent phase include neuronal loss, axonal and dendritic plasticity, neurogenesis, and cell repositioning, but the role of these changes in epilepsy development is unclear. Here we have tested whether administration of the synaptic blocker botulinum neurotoxin E (BoNT/E) interferes with development of spontaneous seizures and histopathological changes following an episode of status epilepticus (SE).

View Article and Find Full Text PDF

A simple operational model of heart rate variability is described, accounting in particular for the respiratory sinus arrhythmia, and is fitted to some interbeat interval sequences recorded from normal subjects at rest. The model performance is evaluated using a test based on the nonlinear prediction approach. Moreover, a short comparative account of two similar models described in the literature is given.

View Article and Find Full Text PDF

The synchronization properties of a pair of coupled fast spiking interneurons are studied by using the theory of weakly coupled oscillators. Four different biophysical models of the single fast spiking interneuron are used and the corresponding results are compared. It is shown that for a pair of identical coupled cells, the synchronization properties are model-dependent.

View Article and Find Full Text PDF

Starting from the experimental data on ATP evoked calcium responses in astrocytes, a biophysical model describing these phenomena was built. The simulations showed, in agreement with the experimental findings, that the intracellular calcium fluxes mediated by the P2X and P2Y purinoreceptors are responsible for the biphasic ATP evoked calcium response in astrocytes. Then, the modulation effects on the neural dynamics arising from the release of glutamate from astrocyte are also investigated.

View Article and Find Full Text PDF

Two neural models are analysed and shown to exhibit the stochastic resonance effect. Namely, they respond to an underthreshold sinusoidal signal with an output signal whose signal-to-noise ratio (SNR) firstly increases then decreases as the intensity of noise affecting the system increases. The resonance curves are determined, analytically for the first and simplest model and by a synthetic method for the second one, and the respective resonant behaviours are illustrated and interpreted.

View Article and Find Full Text PDF

Fast spiking interneurons receive excitatory synaptic inputs from pyramidal cells and a relevant problem is to understand how these cells readout this information. Here this topic is investigated theoretically by using a biophysical modeling of a pair of coupled fast spiking interneuron models. The model predicts, in agreement with the experimental findings, that these cells are capable of transmitting pre-synaptic signals with high temporal precision and transferring high frequency inputs while preserving their relative timing.

View Article and Find Full Text PDF

In this report, the LIF neural model driven by underthreshold sinusoidal signals but with a gaussian-distributed noise on the threshold, is approximated by suitably defining an instantaneous firing (or escape) rate, which depends only on the momentary value of the voltage variable. This allows us to obtain, by analytically solving the relevant equations, the main statistical functions describing the "firing activity"; namely, the probability density function of firing phases and that of interspike intervals. From these functions two quantities can be derived, whose dependence on the noise intensity allows the Stochastic Resonance (SR) to be demonstrated.

View Article and Find Full Text PDF

Experimental results revealed that in neocortex inhibitory fast-spiking (FS) interneurons interact also by electrical synapses (gap-junctions). They receive sensory information from thalamus and transfer it to principal cells by feedforward inhibition. Moreover, their synchronous discharge enhances their inhibitory control of pyramidal neurons.

View Article and Find Full Text PDF

In this paper we study a variable coefficient Sine-Gordon (vSG) equation given by theta(tt)-theta(xx)+F(x,t)sin theta=0 where F(x,t) is a real function. To establish if it may be integrable we have performed the standard test of Weiss, Tabor, and Carnevale (WTC). We have got that the (vSG) equation has the Painleve' property (Pp) if the function F(x,t) satisfies a well-defined nonlinear partial differential equation.

View Article and Find Full Text PDF