Publications by authors named "Angelo Bozzola"

Quantum emitters located in proximity to a metal nanostructure individually transfer their energy via near-field excitation of surface plasmons. The energy transfer process increases the spontaneous emission (SE) rate due to plasmon-enhanced local field. Here, we demonstrate a significant acceleration of the quantum emitter SE rate in a plasmonic nanocavity due to cooperative energy transfer (CET) from plasmon-correlated emitters.

View Article and Find Full Text PDF

The use of nano/microspheres or beads for optical nanolithography is a consolidated technique for achieving subwavelength structures using a cost-effective approach; this method exploits the capability of the beads to focus electromagnetic waves into subwavelength beams called photonic nanojets, which are used to expose the photoresist on which the beads are placed. However, this technique has only been used to produce regular patterns based on the spatial arrangement of the beads on the substrate, thus considerably limiting the pool of applications. Here, we present a novel microsphere-based optical lithography technique that offers high subwavelength resolution and the possibility of generating any arbitrary pattern.

View Article and Find Full Text PDF

In this review we present the state of the art and the most recent advances in the field of optical sensing with hybrid plasmonic-photonic whispering gallery mode (WGM) resonators. After a brief introduction on the basic physics behind photonic WGM resonators and localized surface plasmon (LSP) nanostructures, we analyze the different types of optical sensors specifically designed for bulk refractive index sensing, molecular binding and single object detection. We point out the physical and technological key points of the different approaches proposed in the literature, and we systematically compare hybrid sensors and purely photonic WGM sensors.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how tuning Rabi splitting affects the dynamics of strongly coupled J-aggregate and surface plasmon polariton systems.
  • By adjusting the concentration of J-aggregate molecules within a nanostructured polaritonic system, the researchers determined the optimal geometry for maximizing Rabi splitting and conducted transient absorption measurements.
  • Results showed that higher J-aggregate concentration leads to increased distance between bleaching peaks in absorption spectra and a shorter lifetime for the upper band, highlighting the influence of strong coupling on the dynamics of these hybrid systems.
View Article and Find Full Text PDF

We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration.

View Article and Find Full Text PDF

With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (μc-Si) layer is only ~1/6 of conventional μc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device.

View Article and Find Full Text PDF

We present a theoretical optimisation of 1D apodized grating couplers in a "pure" Silicon-On-Insulator (SOI) architecture, i.e. without any bottom reflector element, by means of a general mutative method.

View Article and Find Full Text PDF

We propose a new figure of merit to assess the performance of light trapping nanostructures for solar cells, which we call the light trapping efficiency (LTE). The LTE has a target value of unity to represent the performance of an ideal Lambertian scatterer, although this is not an absolute limit but rather a benchmark value. Since the LTE aims to assess the nanostructure itself, it is, in principle, independent of the material, fabrication method or technology used.

View Article and Find Full Text PDF

We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material.

View Article and Find Full Text PDF