Publications by authors named "Angelo Angelini"

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths.

View Article and Find Full Text PDF

The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through quantification by reference-free grazing incidence X-ray fluorescence.

View Article and Find Full Text PDF

The accurate design of labelled oligo probes for the detection of miRNA biomarkers by Surface Enhanced Raman Scattering (SERS) may improve the exploitation of the plasmonic enhancement. This work, thus, critically investigates the role of probe labelling configuration on the performance of SERS-based bioassays for miRNA quantitation. To this aim, highly efficient SERS substrates based on Ag-decorated porous silicon/PDMS membranes are functionalized according to bioassays relying on a one-step or two-step hybridization of the target miRNA with DNA probes.

View Article and Find Full Text PDF

Light-based 3D printing techniques could be a valuable instrument in the development of customized and affordable biomedical devices, basically for high precision and high flexibility in terms of materials of these technologies. However, more studies related to the biocompatibility of the printed objects are required to expand the use of these techniques in the health sector. In this work, 3D printed polymeric parts are produced in lab conditions using a commercial Digital Light Processing (DLP) 3D printer and then successfully tested to fabricate components suitable for biological studies.

View Article and Find Full Text PDF

The light responsivity of ortho-nitrobenzyl esters (o-NBE) is exploited to inscribe µ-scale 2.5D patterns in thiol-ene networks by direct laser writing. For this purpose, a multifunctional thiol and a photosensitive alkene with an o-NBE chromophore are cured upon visible light exposure without inducing a premature photocleavage of the o-NBE links.

View Article and Find Full Text PDF

Photonic crystals are a unique tool to modify the photoluminescence of light-emitting materials. A variety of optical effects have been demonstrated by infiltrating opaline structures with photoactive media. On the other hand, the fabrication of such structures includes complex infiltration steps, that often affect the opal lattice and decrease the efficiency of light emission control.

View Article and Find Full Text PDF

The azobenzene chromophore is used as a functional dye for the development of smart microfluidic devices. A single layer microfluidic channel is produced, exploiting the potential of a dye doped PDMS formulation. The key advantage of this approach is the possibility to control the fluid flow by means of a simple light stimulus.

View Article and Find Full Text PDF

In many optical applications, there is an increasing need for dynamically tunable optical elements that are able to shape the wavefront of light 'on demand'. In this work, an elastomeric easy-to-fabricate optical element whose transmission functions can be reversibly phase configured by visible light is demonstrated. The light responsivity of proper azopolymers incorporated within an elastomeric matrix is exploited to induce a light-controlled graded refractive index (GRIN) distribution within the bulk compound.

View Article and Find Full Text PDF

In this work, we propose an innovative strategy for obtaining functional objects employing a light-activated three-dimensional (3D) printing process without affecting the materials' printability. In particular, a dye is a necessary ingredient in a formulation for a digital light processing 3D printing method to obtain precise and complex structures. Here, we use a photoluminescent dye specifically synthesized for this purpose that enables the production of 3D printed waveguides and splitters able to guide the luminescence.

View Article and Find Full Text PDF

The interaction of fluorophores with nearby metallic structures is now an active area of research. Dielectric photonic structures offer some advantages over plasmonic structures, namely small energy losses and less quenching. We describe a dielectric one-dimensional photonic crystal (1DPC), which supports Bloch surface waves (BSWs) from 280 to 440 nm.

View Article and Find Full Text PDF

Azopolymers are known to exhibit a strong light responsivity known as athermal photofluidization. Although the underlying physics is still under debate, athermal photofluidization has been demonstrated to trigger mass-migration according to the polarization of a proper illumination light. Here, a polymer blend is proposed wherein a commercial azo-polyelectrolyte is mixed with a passive polymer.

View Article and Find Full Text PDF

Complex light fields, including evanescent Bessel beams, can be generated at dielectric interfaces by means of oil-immersion optics operating in total internal reflection conditions. Here we report on the observation of evanescent complex fields produced on a dielectric multilayer through the interference of surface modes resonantly sustained by the multilayer itself. The coupling to surface modes is attained by modifying the wavefront of an incident laser beam in such a way that the resulting intensity distribution in k-space matches the dispersion of the surface mode.

View Article and Find Full Text PDF

Herein, we report a systematic study on the wetting and optical properties of a PDMS surface coated by silver nanoparticles. A uniform Ag nanoparticles distribution onto PDMS membrane was obtained through dc room-temperature sputtering. The effect of sputtering current and PDMS mixing ratio between oligomer and curing agent was investigated by means of UV-vis spectroscopy and contact angle measurements.

View Article and Find Full Text PDF

A one-dimensional photonic crystal (1DPC) consisting of a stack of alternate TiO(2) and Al(2)O(3) layers is deposited on the side wall of a glass rod by Atomic Layer Deposition. The stack is designed to sustain TE-polarized Bloch Surface Waves (BSW) in the visible spectrum at wavelengths shorter than 650 nm. Experimental evidence of light coupling and guiding capabilities of the 1DPC is provided together with a possible application for fluorescence-based remote sensors.

View Article and Find Full Text PDF

The control of emission from localized light sources is an objective of outstanding relevance in nanophotonics. In a recent past, a large number of metallic nanostructures has been proposed to this end, wherein plasmonic modes are exploited as energy carriers on a subwavelength scale. As an interesting alternative, we present here the use of surface modes on patterned dielectric multilayers to deliver electromagnetic power from free-space to localized volumes and vice versa.

View Article and Find Full Text PDF

We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate.

View Article and Find Full Text PDF