Publications by authors named "Angelisova P"

Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives.

View Article and Find Full Text PDF

Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups.

View Article and Find Full Text PDF

An advantageous alternative to the use of detergents in biochemical studies on membrane proteins are the recently developed styrene-maleic acid (SMA) amphipathic copolymers. In our recent study we demonstrated that using this approach, most T cell membrane proteins were fully solubilized (presumably in small nanodiscs), while two types of raft proteins, GPI-anchored proteins and Src family kinases, were mostly present in much larger (>250 nm) membrane fragments markedly enriched in typical raft lipids, cholesterol and lipids containing saturated fatty acid residues. In the present study we demonstrate that disintegration of membranes of several other cell types by means of SMA copolymer follows a similar pattern and we provide a detailed proteomic and lipidomic characterization of these SMA-resistant membrane fragments (SRMs).

View Article and Find Full Text PDF

Low-molecular weight (MW) amphiphilic copolymers have been recently introduced as a powerful tool for the detergent-free isolation of cell membrane proteins. Herein, a screening approach is used to identify a new copolymer type for this application. Via a two-step ATRP/acidolysis procedure, a 3 × 3 matrix of well-defined poly[(butyl methacrylate)-co-(methacrylic acid)] copolymers (denoted BMAA) differing in their MW and ratio of hydrophobic (BMA) and hydrophilic (MAA) units is prepared.

View Article and Find Full Text PDF

LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes.

View Article and Find Full Text PDF

Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes.

View Article and Find Full Text PDF

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown.

View Article and Find Full Text PDF

An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs.

View Article and Find Full Text PDF

Since publication of this article, the authors identified an error in the acknowledgments section. The original sentence in acknowledgments reads as follows.

View Article and Find Full Text PDF

Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα.

View Article and Find Full Text PDF
Article Synopsis
  • * PSTPIP2's role in disease involves interactions with specific inhibitory enzymes like Csk and SHIP1, which are vital for regulating inflammatory responses, particularly the processing of IL-1β in neutrophils.
  • * Deficiency in PSTPIP2 leads to an overactive response in neutrophils to various external stimuli, indicating a state of hypersensitivity that contributes to the inflammatory condition.
View Article and Find Full Text PDF

Transmembrane adaptor proteins are membrane-anchored proteins consisting of a short extracellular part, a transmembrane domain, and a cytoplasmic part with various protein-protein interaction motifs but lacking any enzymatic activity. They participate in the regulation of various signaling pathways by recruiting other proteins to the proximity of cellular membranes where the signaling is often initiated and propagated. In this work, we show that LST1/A, an incompletely characterized protein encoded by MHCIII locus, is a palmitoylated transmembrane adaptor protein.

View Article and Find Full Text PDF

Formation of the immunological synapse between an antigen-presenting cell (APC) and a T cell leads to signal generation in both cells involved. In T cells, the lipid raft-associated transmembrane adaptor protein LAT plays a central role. Its phosphorylation is a crucial step in signal propagation, including the calcium response and mitogen-activated protein kinase activation, and largely depends on its association with the SLP76 adaptor protein.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells 1 (TREM-1) has been implicated in the production of proinflammatory cytokines and chemokines during bacterial infection and sepsis. For downstream signal transduction, TREM-1 is coupled to the ITAM-containing adaptor DAP12. Here, we demonstrate that Bruton tyrosine kinase (Btk), a member of the Tec kinases, becomes phosphorylated upon TREM-1 triggering.

View Article and Find Full Text PDF

Background: Vitronectin is an abundant plasma glycoprotein identified also as a part of extracellular matrix. Vitronectin is substantially enriched at sites of injured, fibrosing, inflamed, and tumor tissues where it is believed to be involved in wound healing and tissue remodeling. Little is known about the mechanism of vitronectin localization into the damaged tissues.

View Article and Find Full Text PDF

CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK).

View Article and Find Full Text PDF

The expression of drebrin, a cytoskeletal protein newly estimated by expression profiling to correlate with the genotype and prognosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), was examined by independent methods. After demonstrating its higher expression in TEL/AML1(pos) BCP-ALL by quantitative reverse transcriptase polymerase chain reaction, we developed an anti-drebrin monoclonal antibody (mAb). In a cohort of 86 children with BCP-ALL, we found increased expression of drebrin in TEL/AML1(pos) ALL.

View Article and Find Full Text PDF

Transmembrane adaptor proteins (TRAPs) are important organizers and regulators of immunoreceptor-mediated signaling. A bioinformatic search revealed several potential novel TRAPs, including a highly conserved protein, proline rich 7 (PRR7), previously described as a component of the PSD-95/N-methyl-d-aspartate receptor protein complex in postsynaptic densities (PSD) of rat neurons. Our data demonstrate that PRR7 is weakly expressed in other tissues but is readily up-regulated in activated human peripheral blood lymphocytes.

View Article and Find Full Text PDF
Article Synopsis
  • TCR signal transduction begins with Src-family kinases (SFK) phosphorylating ITAMs in T-cell receptors, crucial for signaling.
  • TCR's interaction with membrane rafts allows access to SFK and other signaling molecules, but the process is not fully understood.
  • Targeting the negative regulator Csk to different membrane types reveals that it effectively inhibits TCR signaling when in "classical" rafts, highlighting the importance of raft-associated SFK in TCR activation.
View Article and Find Full Text PDF

Membrane rafts and signaling molecules associated with them are thought to play important roles in immunoreceptor signaling. Rafts differ in their lipid and protein compositions from the rest of the membrane and are relatively resistant to solubilization by Triton X-100 or similar detergents, producing buoyant, detergent-resistant membranes (DRMs) that can be isolated by density gradient ultracentrifugation. One of the key signaling molecules present in T cell DRMs is the transmembrane adaptor protein LAT (linker for activation of T cells).

View Article and Find Full Text PDF

LIME (Lck-interacting membrane protein) is a transmembrane adaptor that associates with the Lck and Fyn protein tyrosine kinases and with the C-terminal Src kinase (Csk). To delineate the role of LIME in vivo, LIME-deficient mice were generated. Although Lime transcripts were expressed in immature and mature B and T cells, the absence of LIME impeded neither the development nor the function of B and T cells.

View Article and Find Full Text PDF

The engagement of triggering receptor expressed on myeloid cells 1 (TREM-1) on macrophages and neutrophils leads to TNF-alpha and IL-8 production and enhances inflammatory responses to microbial products. For signal transduction, TREM-1 couples to the ITAM-containing adapter DNAX activation protein of 12 kDa (DAP12). In general, ITAM-mediated signals lead to cell activation, although DAP12 was recently implicated in inhibitory signaling in mouse macrophages and dendritic cells.

View Article and Find Full Text PDF

Non-lineage section studied in total 90 mAb samples, including 23 submitted as known CD specificities. Thirty four samples submitted as unknown and potentially novel specificities recognized actually well known molecules (HLA class I, CD7, 11b, 14, 18, 44, 45, 45RB, 47, 59, 62L, 71, 82, 147). Seven samples reacted with newly defined CD molecules (CD281, 282, 284, 298, 315, 316, 321) and specificities of 12 samples remained unresolved.

View Article and Find Full Text PDF

Transmembrane adaptor proteins (of which 7 have been identified so far) are involved in receptor signaling in immune cells. They have only a short extracellular region, with most of the molecule comprising a substantial intracytoplasmic region carrying multiple tyrosine residues that can be phosphorylated by Src- or Syk-family kinases. In this paper, we report an immunohistologic study of 6 of these molecules in normal and neoplastic human tissue sections and show that they are restricted to subpopulations of lymphoid cells, being present in either T cells (LAT, LIME, and TRIM), B cells (NTAL), or subsets of both cell types (PAG and SIT).

View Article and Find Full Text PDF