The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disorder characterized by early-onset epilepsy, intellectual disability, motor and visual dysfunctions. The causative gene is CDKL5, which codes for a kinase required for brain development. There is no cure for CDD patients; treatments are symptomatic and focus mainly on seizure control.
View Article and Find Full Text PDFRett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 () gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology.
View Article and Find Full Text PDFThe beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons.
View Article and Find Full Text PDFCellular senescence is characterized by proliferation and migration exhaustion, senescence-associated secretory phenotype (SASP), and oxidative stress. Senescent vascular smooth muscle cells (VSMCs) contribute to cardiovascular diseases and atherosclerotic plaque instability. Since there are no unanimously agreed senescence markers in human VSMCs, to improve our knowledge, we looked for new possible senescence markers.
View Article and Find Full Text PDFAtaxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR).
View Article and Find Full Text PDFRett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined.
View Article and Find Full Text PDFBackground And Objectives: CDKL5 deficiency disorder (CDD) is a neurodevelopmental encephalopathy characterized by early-onset epilepsy and impaired psychomotor development. Variations in the X-linked gene coding for a kinase cause CDD. Molecular genetics has proved that almost all pathogenic missense substitutions localize in the N-terminal catalytic domain, therefore underlining the importance for brain development and functioning of the kinase activity.
View Article and Find Full Text PDFRett syndrome (RTT) is a neurodevelopmental disorder that represents the most common genetic cause of severe intellectual disability in females. Most patients carry mutations in the X-linked gene, coding for the methyl-CpG-binding protein 2 (MeCP2), originally isolated as an epigenetic transcriptional factor able to bind methylated DNA and repress transcription. Recent data implicated a role for glia in RTT, showing that astrocytes express and that its deficiency affects their ability to support neuronal maturation by non-cell autonomous mechanisms.
View Article and Find Full Text PDFMutations in the X-linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice.
View Article and Find Full Text PDFObjective: In this exploratory study, we tested whether electroencephalographic (EEG) rhythms may reflect the effects of a chronic administration (4 weeks) of an anti-amyloid β-site amyloid precursor protein (APP) cleaving enzyme 1 inhibitor (BACE-1; ER-901356; Eisai Co., Ltd., Tokyo, Japan) in TASTPM (double mutation in APP KM670/671NL and PSEN1 M146V) producing Alzheimer's disease (AD) amyloid neuropathology as compared to wild type (WT) mice.
View Article and Find Full Text PDFBackground: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits.
View Article and Find Full Text PDFMutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate.
View Article and Find Full Text PDFThe brain-derived neurotrophic factor (BDNF) plays crucial roles in both the developing and mature brain. Moreover, alterations in BDNF levels are correlated with the cognitive impairment observed in several neurological diseases. Among the different therapeutic strategies developed to improve endogenous BDNF levels is the administration of the BDNF-inducing drug Fingolimod, an agonist of the sphingosine-1-phosphate receptor.
View Article and Find Full Text PDFMutations in the gene lead to an incurable rare neurological condition characterized by the onset of seizures in the first weeks of life and severe intellectual disability. Replacement gene or protein therapies could represent intriguing options, however, their application may be inhibited by the recent demonstration that is dosage sensitive. Conversely, correction approaches acting on pre-mRNA splicing would preserve physiological regulation.
View Article and Find Full Text PDFThe X-linked gene codes for a kinase whose mutations have been associated with a suite of neurodevelopmental disorders generally characterized by early-onset epileptic encephalopathy and severe intellectual disability. The impact of these mutations on CDKL5 functions and brain development remain mainly unknown, although the importance of maintaining the catalytic activity is generally recognized. Since no cure exists for CDKL5 disorders, the demand for innovative therapies is a real emergency.
View Article and Find Full Text PDFMeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain.
View Article and Find Full Text PDFMutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD.
View Article and Find Full Text PDFBackground: It has been shown that theta (6-10 Hz) and delta (1-6 Hz) ongoing electroencephalographic (EEG) rhythms revealed variations in the cortical arousal in C57 Wild Type (WT) mice during cage exploration (active condition) compared to awake quiet behavior (passive condition; IMI PharmaCog project, www.pharmacog.eu).
View Article and Find Full Text PDFBackground: Amyloid-β oligomers (AβO) are species mainly involved in the synaptic and cognitive dysfunction in Alzheimer's disease. Although their action has been described mainly at neuronal level, it is now clear that glial cells govern synaptic activity in their resting state, contributing to new learning and memory establishment. In contrast, when activated, they may lead to synaptic and cognitive dysfunction.
View Article and Find Full Text PDFResting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.
View Article and Find Full Text PDFAlzheimer's disease is experimentally modeled in transgenic (Tg) mice overexpressing mutated forms of the human amyloid precursor protein either alone or combined with mutated presenilins and tau. In the present study, we developed a systematic approach to compare double (TASTPM) and triple (APP/PS2/Tau) Tg mice by serial magnetic resonance imaging and spectroscopy analysis from 4 to 26 months of age to define homologous biomarkers between mice and humans. Hippocampal atrophy was found in Tg mice compared with WT.
View Article and Find Full Text PDFPurpose: Long-lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using (1) H-magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation.
View Article and Find Full Text PDF