Publications by authors named "Angelique van't Wout"

Objective: Macrophage interleukin (IL)-10 signalling plays a critical role in the maintenance of a regulatory phenotype that prevents the development of IBD. We have previously found that anti-tumour necrosis factor (TNF) monoclonal antibodies act through Fcγ-receptor (FcγR) signalling to promote repolarisation of proinflammatory intestinal macrophages to a CD206+ regulatory phenotype. The role of IL-10 in anti-TNF-induced macrophage repolarisation has not been examined.

View Article and Find Full Text PDF

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites.

View Article and Find Full Text PDF

Background And Aims: Although several endoscopic and histopathologic indices are available for evaluating the severity of inflammation in mouse models of colitis, the reliability of these scoring instruments is unknown. Our aim was to evaluate the reliability of the individual items in the existing indices and develop new scoring systems by selection of the most reliable index items.

Methods: Two observers scored the histological slides [n = 224] and endoscopy videos [n = 201] from treated and untreated Interleukin[IL]-10 knock-out and T-cell transferred SCID mice.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly, and yet there remains no effective treatment or vaccine. The surface of the virion is decorated with the fusion glycoprotein (RSV F) and the attachment glycoprotein (RSV G), which binds to CX3CR1 on human airway epithelial cells to mediate viral attachment and subsequent infection. RSV G is a major target of the humoral immune response, and antibodies that target the central conserved region of G have been shown to neutralize both subtypes of RSV and to protect against severe RSV disease in animal models.

View Article and Find Full Text PDF

Background: Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very important in the context of viral latency. In latently infected cells, viral gene expression is inhibited as a result of the sequestration of host transcription factors and epigenetic modifications.

Results: In our present study we analyzed the effect of host factor dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) on HIV-1 replication.

View Article and Find Full Text PDF

Background: HIV-1 infected macrophages play a key role in HIV-1 infection. Even during anti-retroviral treatment, macrophages keep producing virus due to suboptimal tissue penetration and reduced efficacy of antiretrovirals. It is therefore of major importance to understand which host factors are involved in HIV-1 replication in macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • A small group of HIV-1-infected individuals, called viremic long-term non-progressors (VNPs), manages to maintain low immune activation levels and avoid immunodeficiency despite high viral loads.
  • Studies of Nef proteins from these VNPs demonstrated that they can modulate various T cell surface markers but were less effective than proteins from individuals with progressive HIV-1 infection (P-Nefs) in down-regulating T cell activation.
  • The findings indicate that the VNPs and progressive HIV-1 infected individuals share similar functional properties of their Nef proteins, suggesting that the lack of immune activation in VNPs is not linked to unique features of the Nef protein.
View Article and Find Full Text PDF

The emergence of CXCR4-using HIV variants (X4-HIV) is associated with accelerated disease progression in the absence of antiretroviral therapy. However, the effect of X4-HIV variants on the treatment response remains unclear. Here we determined whether the presence of X4-HIV variants influenced the time to undetectable viral load and CD4+ T cell reconstitution after initiation of cART in 732 patients.

View Article and Find Full Text PDF

Background: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection.

Methods: In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis.

View Article and Find Full Text PDF

At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a 'fitness valley' separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs.

View Article and Find Full Text PDF

Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that the evolution of HIV-1 can help predict how quickly the disease will progress, particularly focusing on the viral diversity present early in infection.
  • The study examined HIV-1 envelope diversity in 89 homosexual participants at seroconversion and one year later, correlating this with clinical outcomes related to disease progression.
  • Findings revealed that certain patterns of viral diversity were strongly linked to faster progression to AIDS and related deaths, suggesting that understanding viral diversity early in infection could provide insight into patient prognosis.
View Article and Find Full Text PDF

Background: DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4(+) T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11.

View Article and Find Full Text PDF

Background: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies.

View Article and Find Full Text PDF

To trace the evolutionary patterns underlying evolution of coreceptor use within a host, we studied an HIV-1 transmission pair involving a donor who exclusively harbored CCR5-using (R5) variants throughout his entire disease course and a recipient who developed CXCR4-using variants. Over time, R5 variants in the donor optimized coreceptor use, which was associated with an increased number of potential N-linked glycosylation sites (PNGS) and elevated V3 charge in the viral envelope. Interestingly, R5 variants that were transmitted to the recipient preserved the viral characteristics of this late stage genotype and phenotype.

View Article and Find Full Text PDF

Four genome-wide RNAi screens have recently identified hundreds of HIV-1 dependency factors (HDFs). Previously, we reported a large variation in the ability of HIV-1 to replicate in monocyte-derived macrophages (MDM) derived from >400 healthy seronegative blood donors. Here we determined whether SNPs in genes encoding newly identified HDFs were associated with this variation in HIV-1 replication.

View Article and Find Full Text PDF

Objective: Heterozygosity for a 32 base pair deletion in the CCR5 gene (CCR5wt/Δ32) and the minor alleles of a single-nucleotide polymorphism in the HCP5 gene (rs2395029) and in the HLA-C gene region (-35HLA-C; rs9264942) has been associated with a lower viral load set point. Recent studies have shown that over calendar time, viral load set point has significantly increased at a population level. Here we studied whether this increase coincides with a fading impact of above-mentioned host genetic markers on HIV-1 control.

View Article and Find Full Text PDF

Background: AIDS develops typically after 7-11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (<2 years) and long-term non-progression (>15 years). To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS) in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS.

Methods: The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints.

View Article and Find Full Text PDF

The emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants is associated with accelerated disease progression. CXCR4-using variants are believed to evolve from CCR5-using variants, but due to the extremely low frequency at which transitional intermediate variants are often present, the kinetics and mutational pathways involved in this process have been difficult to study and are therefore poorly understood. Here, we used ultra-deep sequencing of the V3 loop of the viral envelope in combination with the V3-based coreceptor prediction tools PSSM(NSI/SI) and geno2pheno([coreceptor]) to detect HIV-1 variants during the transition from CCR5- to CXCR4-usage.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus type 1 (HIV-1) superinfection is infection of an HIV-1 seropositive individual with another HIV-1 strain. The rate at which HIV-1 superinfection occurs might be influenced by sexual behavior. Superinfection might be detected more often by analyzing longitudinal samples collected from time periods of unsafe sexual behavior.

View Article and Find Full Text PDF

Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages.

View Article and Find Full Text PDF

The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades.

View Article and Find Full Text PDF

The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw conclusions across hosts stratified into clinically relevant populations. Similar inference problems are proliferating across many measurably evolving pathogens for which intrahost sequence samples are readily available. To this end, we propose novel hierarchical phylogenetic models (HPMs) that incorporate fixed effects to test for differences in dynamics across host populations in a formal statistical framework employing stochastic search variable selection and model averaging.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a genome-wide association study focusing on HIV-1 controllers and progressors to understand genetic factors influencing chronic viral infections.
  • They discovered over 300 significant single-nucleotide polymorphisms (SNPs) specifically within the major histocompatibility complex (MHC), emphasizing its importance for infectious diseases.
  • Key findings indicate that specific amino acids in HLA proteins, especially HLA-B and HLA-C, significantly influence the interaction between HLA and viral peptides, affecting the control of HIV infection.
View Article and Find Full Text PDF

Background: The compilation of previous genomewide association studies of AIDS shows a major polymorphism in the HCP5 gene associated with both control of the viral load and long-term nonprogression (LTNP) to AIDS.

Methods: To look for genetic variants that affect LTNP without necessary control of the viral load, we reanalyzed the genomewide data of the unique LTNP Genomics of Resistance to Immunodeficiency Virus (GRIV) cohort by excluding "elite controller" patients, who were controlling the viral load at very low levels (<100 copies/mL).

Results: The rs2234358 polymorphism in the CXCR6 gene was the strongest signal (P=2.

View Article and Find Full Text PDF