While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble β-cyclodextrin (β-CD) hosts. We identified several parameters that influence the redox response, β-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density.
View Article and Find Full Text PDFA number of stressors and inflammatory mediators (cytokines, proteases, oxidative stress mediators) released during inflammation or ischemia stimulate and activate cells in blood, the vessel wall or tissues. The most well-known functional and phenotypic responses of activated cells are (1) the immediate expression and/or release of stored or newly synthesized bioactive molecules, and (2) membrane blebbing followed by release of microvesicles. An ultimate response, namely the formation of extracellular traps by neutrophils (NETs), is outside the scope of this work.
View Article and Find Full Text PDFMicrovesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is an optical, real-time and label-free technique which represents a standard to study biomolecular interactions. While SPR signals are usually positive upon recognition, a few cases of negative signals have been reported because of significant conformational transition of the receptor upon the recognition of the target. In this study, we reported on the observation of negative or null SPR signals for an aptamer recognition with its low molecular weight target.
View Article and Find Full Text PDFThe direct biolayer interferometry (BLI) measurement of low-molecular-weight (LMW) analytes (<200 Da) still represents a challenge, in particular, when low receptor densities are used. BLI is a powerful optical technique for the label-free, real-time characterization and quantification of biomolecular interactions at interfaces. We demonstrate herein that the quantification of biomolecular recognition is possible by BLI using either 2D-like or 3D platforms for aptamer ligand immobilization.
View Article and Find Full Text PDFAptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge.
View Article and Find Full Text PDFA series of nine Ni(II) salophen complexes involving one, two, or three alkyl-imidazolium side-chains was prepared. The lengths of the side-chains were varied from one to three carbons. The crystal structure of one complex revealed a square planar geometry of the nickel ion.
View Article and Find Full Text PDFBiotinylated amphipol was used to entrap FhuA (an E. coli outer membrane protein) and immobilize the FhuA-amphipol complex on streptavidin surfaces. Using this assembly, we have successfully devised surface-based assays for studying the recognition of FhuA by pb5 (a bacteriophage T5 protein) and determination of the affinity constant.
View Article and Find Full Text PDFTethered bilayer lipid membranes (tBLMs) are designed on mixed self-assembled monolayers (SAMs) of a novel synthetic anchoring thiol, 2,3-di-o-palmitoylglycerol-1-tetraethylene glycol mercaptopropanoic acid ester (TEG-DP), and a new short dilution thiol molecule, tetraethylene glycol mercaptopropanoic acid ester (TEG). tBLM formation was accomplished by self-directed fusion of small unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. The influence of the dilution of the anchoring thiol molecule in the SAM on the vesicle fusion process and on the properties of the resulting tBLMs is studied.
View Article and Find Full Text PDFThis work presents an in situ study of the adsorption/desorption behavior of ferrocene(Fc)-functionalized linear polymers on a gold surface covered with beta-cyclodextrin(beta-CD)-modified self-assembled monolayers (SAMs). The characterization of binary SAMs obtained with HS-(CH(2))(11)-EG(6)-N(3) and HS-(CH(2))(11)-EG(4)-OH (EG, ethylene glycol) was performed using a quartz crystal microbalance with dissipation monitoring (QCM-D), cyclic voltammetry, and contact angle measurements. The functionalization of SAMs with beta-CD was made via the "click" reaction between the beta-CD monoalkyne derivative and azide groups exhibited by SAMs.
View Article and Find Full Text PDFA new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular-like G-quadruplex motif 1 (parallel G-quadruplex conformation), an intramolecular G-quadruplex 2, and a duplex DNA 3 have been designed and developed. The method is based on the concept of template-assembled synthetic G-quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G-quadruplex conformation.
View Article and Find Full Text PDFDeoxyuridine 5'-triphosphate pyrophosphatases (dUTPases) are ubiquitous enzymes essential for hydrolysis of dUTP, thus preventing its incorporation into DNA. Although Epstein-Barr virus (EBV) dUTPase is monomeric, it has a high degree of similarity with the more frequent trimeric form of the enzyme. In both cases, the active site is composed of five conserved sequence motifs.
View Article and Find Full Text PDFThe investigation of recognition events between carbohydrates and proteins, especially the understanding of how spatial factors and binding avidity are correlated, remains a great interest for glycobiology. In this context we have investigated by nanogravimetry (QCM-D) and surface plasmon resonance (SPR), the kinetics and thermodynamics of the interaction between concanavalin A (Con A) and various neoglycopeptide ligands of low molecular weight. Regioselectively addressable functionalized templates (RAFT) have been used as scaffolds for the design of multivalent neoglycopeptides bearing thiol or biotin functions for their anchoring on transducer surfaces.
View Article and Find Full Text PDFMultilayer films are formed using host-guest interaction between two derivatized chitosans, one, with beta-cyclodextrin cavities and the other with adamantyl moieties.
View Article and Find Full Text PDFHydrophobins are highly tensioactive fungal proteins with a pronounced affinity for interfaces and a propensity for self-assembly. Recently, these proteins were shown to be useful in retaining different molecules on solid surfaces. This finding offers a possibility for developing new functional materials, while creating the necessity of further research at a deeper mechanistic level.
View Article and Find Full Text PDFSeven new amphiphilic cyclodextrins bearing bipyridyl or bithiazolyl moieties at the narrow rim and free hydroxyl or methoxyl groups at the wide rim of the cyclooctaamylose crown were synthesized using a one step "phosphine imide" approach. These ligands form metal complexes that have fluorescence properties with potentials for optical applications. Here, the cyclodextrin derivatives were used as probes for evaluating the role of different moieties in the self-assembly process, providing crucial information in creating functional devices.
View Article and Find Full Text PDF