Publications by authors named "Angelina Vaseva"

Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines.

View Article and Find Full Text PDF

Purpose: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS.

View Article and Find Full Text PDF

In fusion-negative rhabdomyosarcoma (FN-RMS), a pediatric malignancy with skeletal muscle characteristics, >90% of high-risk patients have mutations that activate the RAS/MEK signaling pathway. We recently discovered that SNAI2, in addition to blocking myogenic differentiation downstream of MEK signaling in FN-RMS, represses proapoptotic BIM expression to protect RMS tumors from ionizing radiation (IR). As clinically relevant concentrations of the MEK inhibitor trametinib elicit poor responses in preclinical xenograft models, we investigated the utility of low-dose trametinib in combination with IR for the treatment of RAS-mutant FN-RMS.

View Article and Find Full Text PDF
Article Synopsis
  • Activating RAS mutations are present in some fusion-negative rhabdomyosarcoma (RMS) tumors, and while efforts to target RAS directly have not been clinically successful, disrupting RAS prenylation via farnesyltransferase (FTase) inhibition is a promising strategy.
  • HRAS, one of the RAS family members, relies on FTase for its action, while other RAS types can use a different mechanism; thus, HRAS-driven tumors may respond better to FTase inhibitors like tipifarnib.
  • In experiments, tipifarnib effectively reduced HRAS activity and signaling, inhibiting tumor growth specifically in HRAS-mutant RMS models, suggesting FTase inhibition could be a
View Article and Find Full Text PDF

Aim: Despite aggressive multiagent protocols, patients with metastatic rhabdomyosarcoma (RMS) have poor prognosis. In a recent high-risk trial (ARST0431), 25% of patients failed within the first year, while on therapy and 80% had tumor progression within 24 months. However, the mechanisms for tumor resistance are essentially unknown.

View Article and Find Full Text PDF

Oncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of mutant RMS cells and correlates efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets, and combinations are evaluated in cells and tumor xenografts.

View Article and Find Full Text PDF

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene . Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines.

View Article and Find Full Text PDF

Purpose Of Review: The current review aims to highlight the frequency of RAS mutations in pediatric leukemias and solid tumors and to propose strategies for targeting oncogenic RAS in pediatric cancers.

Recent Findings: The three RAS genes (HRAS, NRAS, and KRAS) comprise the most frequently mutated oncogene family in human cancer. RAS mutations are commonly observed in three of the leading causes of cancer death in the United States, namely lung cancer, pancreatic cancer, and colorectal cancer.

View Article and Find Full Text PDF

Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adenocarcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry-based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line.

View Article and Find Full Text PDF

Our recent ERK1/2 inhibitor analyses in pancreatic ductal adenocarcinoma (PDAC) indicated ERK1/2-independent mechanisms maintaining MYC protein stability. To identify these mechanisms, we determined the signaling networks by which mutant KRAS regulates MYC. Acute KRAS suppression caused rapid proteasome-dependent loss of MYC protein, through both ERK1/2-dependent and -independent mechanisms.

View Article and Find Full Text PDF

There is intense interest in developing therapeutic strategies for RAS proteins, the most frequently mutated oncoprotein family in cancer. Development of effective anti-RAS therapies will be aided by the greater appreciation of RAS isoform-specific differences in signaling events that support neoplastic cell growth. However, critical issues that require resolution to facilitate the success of these efforts remain.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is highly amplified, mutated, and overexpressed in human malignant gliomas. Despite its prevalence and growth-promoting functions, therapeutic strategies to inhibit EGFR kinase activity have not been translated into profound beneficial effects in glioma clinical trials. To determine the roles of oncogenic EGFR signaling in gliomagenesis and tumor maintenance, we generated a novel glioma mouse model driven by inducible expression of a mutant EGFR (EGFR*).

View Article and Find Full Text PDF

p53 is a master regulator of cell death pathways and has transcription-dependent and transcription-independent modes of action. Mitochondria are major signal transducers in apoptosis and are critical for p53-dependent cell death. Our lab and others have discovered that a fraction of stress-induced wild-type p53 protein rapidly translocates to mitochondria upon various stress stimuli and exerts p53-dependent apoptosis.

View Article and Find Full Text PDF

Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown.

View Article and Find Full Text PDF

Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed "oncogene addiction." Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how inhibiting EGFR/HER2 signaling impacts pancreatic cancer, focusing on its role in enhancing radiosensitivity.
  • Lapatinib inhibited cancer cell growth but only sensitized certain cell lines with wild-type K-ras; mutant K-ras lines showed resistance to this treatment.
  • Nelfinavir and other Akt inhibitors significantly improved radiosensitivity in both wild-type and mutant K-ras cells, with nelfinavir also enhancing tumor growth delay in mouse models.
View Article and Find Full Text PDF

p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity.

View Article and Find Full Text PDF

Point mutations emerge as one of the rate-limiting steps in tumor response to small molecule inhibitors of protein kinases. Here we characterized the response of the MET mutated variants, V1110I, V1238I, V1206L and H1112L to the small molecule SU11274. Our results reveal a distinct inhibition pattern of the four mutations with IC(50) values for autophosphorylation inhibition ranging between 0.

View Article and Find Full Text PDF

Strategies to induce p53 activation in tumors that retain wild-type p53 are promising for cancer therapy. Nutlin is a potent and selective pharmacological MDM2 inhibitor that competitively binds to its p53-binding pocket, thereby leading to non-genotoxic p53 stabilization and activation of growth arrest and apoptosis pathways. Nutlin-induced apoptosis is thought to occur via p53's transcriptional program.

View Article and Find Full Text PDF

p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1].

View Article and Find Full Text PDF

Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Emu-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors.

View Article and Find Full Text PDF

Metastatic germ cell tumors (GCT) are curable, however GCTs refractory to cisplatin-based chemotherapy have a poor prognosis. This study explores D-type cyclins as molecular targets in GCTs because all-trans-retinoic acid (RA)-mediated differentiation of the human embryonal carcinoma (EC) cell line NT2/D1 is associated with G1 cell cycle arrest and proteasomal degradation of cyclin D1. RA effects on D-type cyclins are compared in human EC cells that are RA sensitive or dually RA and cisplatin resistant (NT2/D1-R1) and in clinical GCTs that have both EC and mature teratoma components.

View Article and Find Full Text PDF

Nuclear receptor-mediated gene expression is proposed to be regulated by the ordered recruitment of large protein complexes in which activity depends on mutual interactions and posttranslational modifications. In contrast, relatively little attention has been given to mechanisms regulating the expression of the coregulator proteins themselves. Previously we have shown that the ligand-dependent corepressor, RIP140, is a direct transcriptional target of all-trans retinoic acid (RA).

View Article and Find Full Text PDF