A novel hybrid membrane was developed on the basis of poly(-phenylene isophthalamide) (PA) by introducing an original complex modifier into the polymer; this modifier consisted of equal amounts of heteroarm star macromolecules with a fullerene C core (HSM) and the ionic liquid [BMIM][TfN] (IL). The effect of the (HSM:IL) complex modifier on characteristics of the PA membrane was evaluated using physical, mechanical, thermal, and gas separation techniques. The structure of the PA/(HSM:IL) membrane was studied by scanning electron microscopy (SEM).
View Article and Find Full Text PDFThe determination of nonmetals, first of all, the most electronegative ones-nitrogen, oxygen, fluorine, chlorine, and bromine, poses the highest challenge for element analysis. These elements are characterized by high reactivity, volatility, high ionization energy, and the absence of intensive spectral lines in the optical spectral range. Conventional techniques of their quantification include considerable "wet chemistry" stages so the application of these techniques for the solid sample is highly laborious and prone to uncontrollable uncertainties.
View Article and Find Full Text PDFRationale: Dopants in ionic conductors play a crucial role in achieving the required electrochemical properties. A slight variation in their concentration considerably affects the conductivity of crystals and their applicability as ionic conductors and laser materials. To ensure the growth of high-quality fluoride crystals, adequate approaches for the quantification of matrix and admixture/dopant components are required.
View Article and Find Full Text PDF