Publications by authors named "Angelina Rodriguez-Torres"

Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal agents. Antimicrobial peptides, specifically cathelicidins known for their broad-spectrum activity and immunomodulatory functions, have emerged as potential candidates.

View Article and Find Full Text PDF

For the first time, this study shows the nanoarchitectonic process to obtain an acetogenin-enriched nanosystem (AuNPs-Ac) using an aqueous extract fromMill (ACM) composed of gold nanoparticles embedded in an organic matrix that acts as stabilizing agent and presents anti-inflammatory activity and cytotoxical effect against HepG2 cell line, promoting apoptosis. The synthesis of AuNPs-Ac was confirmed by x-ray diffraction analysis, showing metallic gold as the only phase, and the scanning transmission microscope showed an organic cap covering the AuNPs-Ac. Fourier-transformed infrared suggests that the organic cap comprises a combination of different annonaceous acetogenins, alkaloids, and phenols by the presence of bands corresponding to aromatic rings and hydroxyl groups.

View Article and Find Full Text PDF

Anti-microbial peptides play a vital role in the defense mechanisms of various organisms performing functions that range from the elimination of microorganisms, through diverse mechanisms, to the modulation of the immune response, providing protection to the host. Among these peptides, cathelicidins, a well-studied family of anti-microbial peptides, are found in various animal species, including reptiles. Due to the rise in anti-microbial resistance, these compounds have been suggested as potential candidates for developing new drugs.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) are a new carbon-based nanomaterial that has attracted tremendous attention due to their excellent fluorescent properties, chemical stability, water solubility, and biocompatibility features. Here, fluorescent CQDs synthesized by a green nanoarchitectonic method using Cinchona Pubescens Vahl extract were evaluated as drug nanocarriers for carboplatin (CBP) delivery. The characterization methods showed CQDs with semispherical shapes and sizes around 5 nm, temperature- and pH-dependent functional groups that interact with the CBP molecule adding specificity to the drug-delivery system.

View Article and Find Full Text PDF

Vaccines against bovine babesiosis must, ideally, induce a humoral immune response characterized by neutralizing antibodies against conserved epitopes and a cellular Th1 immune response. In Babesia bovis, proteins such as AMA-1, MSA-2c, and RAP-1 have been characterized and antibodies against these proteins have shown a neutralizing effect, demonstrating the implication of B and T-cell epitopes in the immune response. There is evidence of the existence of B and T-cell epitopes in these proteins, however, it remains to be defined, the presence of conserved peptides in strains from around the world containing B and T-cell epitopes, and their role in the generation of a long-lasting immunity.

View Article and Find Full Text PDF

Eysenhardtia polystachya (EP) is an endemic Mexican plant that has been widely studied for its antidiabetic, antibacterial, and antioxidant properties. Several studies had reported the main components of EP, but their fluorescence properties had not been broadly studied. In a previous study we obtained extracts with different composition from this plant and they presented florescence.

View Article and Find Full Text PDF

Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) has been shown to specifically bind and induce cell death of different types of cancer cells and also has exhibited an effect on early colon tumorigenesis. However, the development of a pharmaceutical formula is not possible yet because the production process is expensive and slow and provides low yields. Therefore, the purpose of the present work was to develop a strategy to produce one bioactive lectin by rhizosecretion through root exudates on genetically modified plants.

View Article and Find Full Text PDF