Purpose: Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle.
View Article and Find Full Text PDFIn this study, we investigated the potential of the multivariate curve resolution alternating least squares (MCR-ALS) algorithm for analyzing three-dimensional (3D) H-MRSI data of the prostate in prostate cancer (PCa) patients. MCR-ALS generates relative intensities of components representing spectral profiles derived from a large training set of patients, providing an interpretable model. Our objectives were to classify magnetic resonance (MR) spectra, differentiating tumor lesions from benign tissue, and to assess PCa aggressiveness.
View Article and Find Full Text PDFPurpose: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites.
Methods: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering.
In this paper, we review the developments of H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of H MRSI without water signal suppression.
View Article and Find Full Text PDF