Hybrid materials based on perfluorophenyl functionalized quinolines directly attached onto the sp(2) hybridized surface of carbon nanostructures have been prepared and studied herein along with their precursor semiconducting small molecules. Tails of different polarities have been used so that the molecules would present improved solubility and controllable affinity for the selected substrates. These materials were evaluated for their electronic and electrochemical properties for potential application in organic photovoltaic solar cells (OPVs), using UPS, XPS and CV measurements after deposition onto oxygen plasma cleaned Si wafers or solvent treated ITO coated glass.
View Article and Find Full Text PDFUnlabelled: Zeolite particles with different pore diameter and particle size were loaded with the model anticancer drug 5-fluorouracil. The loaded zeolites were characterized by means of SEM, XRD, DSC, XPS, N2 physisorption and FT-IR. Higher loading of 5-FU was observed for NaX-FAU than BEA.
View Article and Find Full Text PDFPhotoelectron spectroscopy with synchrotron radiation and low energy electron diffraction (LEED) were used in order to study the MgCl(2)Si(111) system. At submonolayer coverage of MgCl(2), a new LEED pattern was observed corresponding to a (sqr rt 3 x sqr rt 3)R30 degrees overlayer superimposed on the underlying reconstructed Si(111)7 x 7. The surface species at this stage are mainly molecular MgCl(2) and MgCl(x) (x<2) or MgO(x)Cl(y) attached to the Si substrate through Cl bridges coexisting with monodentate SiCl.
View Article and Find Full Text PDFThis work represents a characterization study of silicon oxide on Si(111) and Si(100) surfaces intended for use as substrates in organic light-emitting diodes (OLEDs) on chip devices. Samples have been prepared using either native oxide formation or thermal oxidation, and they have also been treated for activation of hydroxyl groups on their surface. Both Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used in order to understand the molecular orientation as well as the chemical composition of the various oxide types formed during these different oxidation processes.
View Article and Find Full Text PDF