Publications by authors named "Angelika Stollewerk"

Wilhelm Roux promoted the newly emerged field of developmental mechanics by establishing the journal 'Archiv für Entwicklungsmechanik', currently known as 'Development, Genes and Evolution'. The founder and supporters of the journal were all men, as were the authors in the first 3 years of the journal's existence. We therefore addressed the question-in what ways did women scientists contribute to this new research field and what impact did they have.

View Article and Find Full Text PDF

Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors.

View Article and Find Full Text PDF

Spiders are equipped with a large number of innervated cuticular specializations, which respond to various sensory stimuli. The physiological function of mechanosensory organs has been analysed in great detail in some model spider species (e.g.

View Article and Find Full Text PDF

Angelika Stollewerk is a Reader at Queen Mary University of London, where her lab uses a diverse range of species to study the evolution of the arthropod nervous system. Angelika spoke to us about social spiders, the future of evo-devo, and open peer review.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates gene duplication in chelicerates, particularly focusing on the common house spider and its evolutionary implications.
  • Researchers sequenced the spider's genome and discovered significant duplications of genes, including Hox genes, indicating an ancient whole genome duplication event in spiders.
  • The findings suggest that spiders and scorpions share a common polyploid ancestor from over 450 million years ago, offering new insights into their evolutionary diversity and adaptations compared to vertebrates.
View Article and Find Full Text PDF

Arthropods have numerous sense organs, which are adapted to their habitat. While some sense organs are similar in structure and function in all arthropod groups, structural differences in functionally related sense organs have been described, as well as the absence of particular sense organ subtypes in individual arthropod groups. Here we address the question of how the diverse structures of arthropod sense organs have evolved by analysing the underlying molecular developmental processes in a crustacean, an arthropod group that has been neglected so far.

View Article and Find Full Text PDF
A flexible genetic toolkit for arthropod neurogenesis.

Philos Trans R Soc Lond B Biol Sci

January 2016

Arthropods show considerable variations in early neurogenesis. This includes the pattern of specification, division and movement of neural precursors and progenitors. In all metazoans with nervous systems, including arthropods, conserved genes regulate neurogenesis, which raises the question of how the various morphological mechanisms have emerged and how the same genetic toolkit might generate different morphological outcomes.

View Article and Find Full Text PDF

Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions.

View Article and Find Full Text PDF

The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later.

View Article and Find Full Text PDF

Insects are ideally suited for gaining insight into the evolutionary developmental mechanisms that have led to adaptive changes of the nervous system since the specific structure of the nervous system can be directly linked to the neural stem cell (neuroblast) lineages, which in turn can be traced back to the last common ancestor of insects. The recent comparative analysis of the Drosophila melanogaster and Tribolium castaneum neuroblast maps revealed substantial differences in the expression profiles of neuroblasts. Here we show that despite the overall conservation of the dorso-ventral expression domains of muscle segment homeobox, intermediate neuroblasts defective and ventral nervous system defective, the expression of these genes relative to the neuroblasts in the respective domains has changed considerably during insect evolution.

View Article and Find Full Text PDF

Background: Crustaceans of the genus Daphnia are one of the oldest model organisms in ecotoxicology, ecology and evolutionary biology. The publication of the Daphnia pulex genome has facilitated the development of genetic tools to answer long-standing questions in these research fields (Science 331: 555-561, 2011). A particular focus is laid on understanding the genetic basis of the striking ability of daphnids to change their phenotype in response to environmental stressors.

View Article and Find Full Text PDF

One of the major questions in evolutionary developmental neurobiology is how neuronal networks have been adapted to different morphologies and behaviour during evolution. Analyses of neurogenesis in representatives of all arthropod species have revealed evolutionary modifications of various developmental mechanisms. Among others, variations can be seen in mechanisms that are associated with changes in neural progenitor identity, which in turn determines the neuronal subtype of their progeny.

View Article and Find Full Text PDF

Background: Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions.

View Article and Find Full Text PDF

Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo.

View Article and Find Full Text PDF

The genetic regulatory networks controlling major developmental processes seem to be conserved in bilaterians regardless of an independent or a common origin of the structures. This has been explained by the employment of a genetic toolkit that was repeatedly used during bilaterian evolution to build the various forms and body plans. However, it is not clear how genetic networks were incorporated into the formation of novel structures and how homologous genes can regulate the disparate morphological processes.

View Article and Find Full Text PDF

In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold.

View Article and Find Full Text PDF

Within euarthropods, the morphological and molecular mechanisms of early nervous system development have been analysed in insects and several representatives of chelicerates and myriapods, while data on crustaceans are fragmentary. Neural stem cells (neuroblasts) generate the nervous system in insects and in higher crustaceans (malacostracans); in the remaining euarthropod groups, the chelicerates (e.g.

View Article and Find Full Text PDF

Netrins are well known for their function as long-range chemotropic guidance cues, in particular in the ventral midline of vertebrates and invertebrates. Over the past years, publications are accumulating that support an additional short-range function for Netrins in diverse developmental processes such as axonal pathfinding and cell adhesion. We describe here the formation of the axonal scaffold in the spiders Cupiennius salei and Achaearanea tepidariorum and show that axonal tract formation seems to follow the same sequence as in insects and crustaceans in both species.

View Article and Find Full Text PDF

One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis.

View Article and Find Full Text PDF

Background: An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors.

View Article and Find Full Text PDF

The phylogenetic position of onychophorans is still being debated; however, most phylogenies suggest that onychophorans are a sister group to the arthropods. Here we have analysed neurogenesis in the brain of the onychophoran Euperipatoides kanangrensis. We show that the development of the onychophoran brain is considerably different from arthropods.

View Article and Find Full Text PDF