Persistent measurable residual disease (MRD) is an increasingly important prognostic marker in acute myeloid leukemia (AML). Currently, MRD is determined by multi-parameter flow cytometry (MFC) or PCR-based methods detecting leukemia-specific fusion transcripts and mutations. However, while MFC is highly operator-dependent and difficult to standardize, PCR-based methods are only available for a minority of AML patients.
View Article and Find Full Text PDFDendritic cells (DCs) are crucial effectors of the immune system, which are formed from hematopoietic stem and progenitor cells (HSPCs) by a multistep process regulated by cytokines and distinct transcriptional mechanisms. C/EBPα is an important myeloid transcription factor, but its role in DC formation is not well defined. Using a -EYFP reporter mouse model, we show that the majority of splenic conventional DCs are derived from -expressing HSPCs.
View Article and Find Full Text PDF-signaling mutations induce the myelomonocytic differentiation and proliferation of hematopoietic stem and progenitor cells. Moreover, they are important players in the development of myeloid neoplasias. RAF kinase inhibitor protein (RKIP) is a negative regulator of -signaling.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is driven by a minor fraction of leukemic stem cells (LSCs) whose persistence is considered being the primary cause of disease relapse. A detailed characterization of the surface immunophenotype of LSCs to discriminate them from bulk leukemic blasts may enable successful targeting of this population thereby improving patient outcomes in AML. To identify surface markers, which may reflect LSC activity at diagnosis, we performed a detailed analysis of 16 putative LSC markers in CD34/38 leukemic subcompartments of 150 diagnostic AML samples using multicolor flow cytometry.
View Article and Find Full Text PDFBackground And Aims: Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively.
View Article and Find Full Text PDFIn humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans' anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function.
View Article and Find Full Text PDF