Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids.
View Article and Find Full Text PDFMammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors have shown preclinical efficacy in solid tumors, including ovarian cancers. Our group has published that the HDAC inhibitor, romidepsin (FK228) suppresses ovarian cancer cell growth at nanomolar concentrations in vitro. HDAC inhibitors appear to be even more effective when used in combination with other antitumor agents.
View Article and Find Full Text PDFChronic inflammation is an important underlying condition for ovarian tumor development, growth and progression. Since chemokine networks are activated by inflammation, patterns of chemokine gene expression were investigated in ovarian cancer cells. Chemokine specific microarrays were performed after mouse (ID8) and human (SKOV-3) ovarian surface epithelial cancer cells were exposed to the inflammatory agent bacterial endotoxin lipopolysaccharide (LPS, 10 microg/ml) and pro-inflammatory cytokines interleukin-1beta (IL-1, 10 ng/ml) and tumor necrosis factor-alpha (TNF, 10 ng/ml).
View Article and Find Full Text PDFThere is an urgent need to develop new strategies to treat ovarian cancer, the most deadly gynecologic malignancy. Histone deacetylase (HDAC) inhibitors are emerging as novel therapeutic drugs in the treatment of a variety of cancers, including those resistant to standard chemotherapy. Since there are multiple HDAC isoforms, determining the precise role of individual HDAC isoenzymes in the growth and progression of ovarian cancer has the potential to influence the use of selective HDAC inhibitors as strategic therapeutic agents that elicit fewer undesirable side effects.
View Article and Find Full Text PDF