To facilitate treatment and limit transmission of tuberculosis (TB), new methods are needed to enable rapid and affordable diagnosis of the disease in high-burden low-resource settings. We have developed a prototype integrated nucleic acid testing device to detect Mycobacterium tuberculosis (M.tb) in sputum.
View Article and Find Full Text PDFNucleic acid amplification testing (NAAT) enables rapid and sensitive diagnosis of tuberculosis (TB), which facilitates treatment and mitigates transmission. Nucleic acid extraction from sputum constitutes the greatest technical challenge in TB NAAT for near-patient settings. This report presents preliminary data for a semi-automated sample processing method, wherein sputum is disinfected and liquefied, followed by PureLyse(®) mechanical lysis and solid-phase nucleic acid extraction in a miniaturized, battery-operated bead blender.
View Article and Find Full Text PDFSepsis is a rapidly progressing, severe inflammatory response to infection, causing more than 200,000 deaths per year. Rapid, specific pathogen identification is important to guide sepsis treatment. In this review, we describe and compare currently available commercial products for sepsis diagnosis and pathogen identification, based on microbiological, molecular, and mass spectrometric technologies.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) infects more than 200 million people globally, with increasing incidence, especially in developing countries. HCV infection frequently progresses to chronic liver disease, creating a heavy economic burden on resource-poor countries and lowering patient quality of life. Effective HCV diagnosis, treatment selection, and treatment monitoring are important in stopping disease progression.
View Article and Find Full Text PDFThis report describes technologies to identify and quantify microRNAs (miRNAs) as potential cancer biomarkers, using breast cancer as an example. Most breast cancer patients are not diagnosed until the disease has advanced to later stages, which decreases overall survival rates. Specific miRNAs are up- or downregulated in breast cancer patients at various stages, can be detected in plasma and serum, and have shown promising preliminary clinical sensitivity and specificity for early cancer diagnosis or staging.
View Article and Find Full Text PDFSens Actuators A Phys
December 2013
We present a passive, miniature check valve which can be manufactured using standard techniques ideal for low-cost, disposable systems used in medical devices and other applications. The body of the valve consists of a hollow cylindrical core, closed at one end, with a side port and a cylindrical elastomeric sleeve placed over the core body, covering the side port. The pressure required for initial opening of the valve, referred to as cracking pressure, can be adjusted, and depends predominantly on the valve core outer diameter, the sleeve inner diameter, the sleeve wall thickness, and the sleeve material's modulus of elasticity.
View Article and Find Full Text PDFSolid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces.
View Article and Find Full Text PDFInfectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design.
View Article and Find Full Text PDFExpert Rev Mol Diagn
September 2012
Early diagnosis of tuberculosis (TB) facilitates appropriate treatment initiation and can limit the spread of this highly contagious disease. However, commonly used TB diagnostic methods are slow, often insensitive, cumbersome and inaccessible to most patients in TB endemic countries that lack necessary resources. This review discusses nucleic acid amplification technologies, which are being developed for rapid near patient TB diagnosis, that are in the market or undergoing clinical evaluation.
View Article and Find Full Text PDFReversible interactions between DNA and silica are utilized in the solid phase extraction and purification of DNA from complex samples. Chaotropic salts commonly drive DNA binding to silica but inhibit DNA polymerase amplification. We studied DNA adsorption to silica using conditions with or without chaotropic salts through bulk depletion and quartz crystal microbalance (QCM) experiments.
View Article and Find Full Text PDFIsothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently.
View Article and Find Full Text PDFMolecular detection of microorganisms requires microbial cell disruption to release nucleic acids. Sensitive detection of thick-walled microorganisms such as Bacillus spores and Mycobacterium cells typically necessitates mechanical disruption through bead beating or sonication, using benchtop instruments that require line power. Miniaturized, low-power, battery-operated devices are needed to facilitate mechanical pathogen disruption for nucleic acid testing at the point of care and in field settings.
View Article and Find Full Text PDFNucleic acid testing for infectious diseases at the point of care is beginning to enter clinical practice in developed and developing countries; especially for applications requiring fast turnaround times, and in settings where a centralized laboratory approach faces limitations. Current systems for clinical diagnostic applications are mainly PCR-based, can only be used in hospitals, and are still relatively complex and expensive. Integrating sample preparation with nucleic acid amplification and detection in a cost-effective, robust, and user-friendly format remains challenging.
View Article and Find Full Text PDFRapid isothermal nucleic acid amplification technologies can enable diagnosis of human pathogens and genetic variations in a simple, inexpensive, user-friendly format. The isothermal exponential amplification reaction (EXPAR) efficiently amplifies short oligonucleotides called triggers in less than 10 min by means of thermostable polymerase and nicking endonuclease activities. We recently demonstrated that this reaction can be coupled with upstream generation of trigger oligonucleotides from a genomic target sequence, and with downstream visual detection using DNA-functionalized gold nanospheres.
View Article and Find Full Text PDFThe fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e.
View Article and Find Full Text PDFWe report the deposition of DNA-conjugated gold nanospheres into arrays of surface nanopores obtained from hexagonally ordered thin polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer films on silicon. The deposition occurs spontaneously from aqueous solution and is driven by either electrostatic interactions or specific DNA hybridization events between the DNA nanospheres and the surface nanopores. To mitigate this spontaneous deposition, we have chemically modified the nanopores with either positively charged aminosilanes or oligonucleotide probe sequences.
View Article and Find Full Text PDFWe present a simple, rapid method for detecting short DNA sequences that combines a novel isothermal amplification method (EXPAR) with visual, colorimetric readout based on aggregation of DNA-functionalized gold nanospheres. The reaction is initiated by a trigger oligonucleotide, synthetic in nature for this proof-of-principle study, which is exponentially amplified at 55 degrees C and converted to a universal reporter oligonucleotide capable of bridging two sets of DNA-functionalized gold nanospheres. This reaction provides >10(6)-fold amplification/conversion in under 5 min.
View Article and Find Full Text PDF