Publications by authors named "Angelika Kronhardt"

The tripartite anthrax toxin from Bacillus anthracis represents the prototype of A-B type of toxins, where the effector A (an enzymatic subunit) is transported with the help of a binding component B into a target cell. Anthrax toxin consists of three different molecules, two effectors, lethal factor (LF) and edema factor (EF) and the binding component also known as protective antigen (PA). PA forms heptamers or octamers following binding to host cell's receptors and mediates the translocation of the effectors into the cytosol via the endosomal pathway.

View Article and Find Full Text PDF

C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells.

View Article and Find Full Text PDF

It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB(7/8)-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit.

View Article and Find Full Text PDF

Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol.

View Article and Find Full Text PDF

Anthrax toxin consists of three different molecules: the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63 kDa C-terminal part of PA, PA(63), forms heptameric channels that insert in endosomal membranes at low pH, necessary to translocate EF and LF into the cytosol of target cells. In many studies, about 30 kDa N-terminal fragments of the enzymatic components EF (254 amino acids) and LF (268 amino acids) were used to study their interaction with PA(63)-channels.

View Article and Find Full Text PDF