Protein aggregation is a well-recognized problem in industrial preparation, including biotherapeutics. These low-energy states constantly compete with a native-like conformation, which is more pronounced in the case of macromolecules of low stability in the solution. A better understanding of the structure and function of such aggregates is generally required for the more rational development of therapeutic proteins, including single-chain fusion cytotoxins to target specific receptors on cancer cells.
View Article and Find Full Text PDFBackground: Epidemiological studies indicate that the consumption of Brassicaceae plants, a rich source of biologically active isothiocyanates (ITCs), may effectively reduce cancer risk. In the current study, we evaluated the anticancer potential of 4-(methylthio)butyl ITC (erucin, ERN) against three phenotypically different breast cancer cell lines: MDA-MB-231, SKBR-3 and T47D.
Methods: The effect of ERN on the viability of breast cancer cells was evaluated using sulforhodamine B and clonogenic assays, and acridine orange/ethidium bromide staining.
Background: Lapatinib is a commonly used drug that interrupts signaling from the epidermal growth factor receptors, EGFR and HER2/neu. Long-term exposure to lapatinib during therapy eliminates cells that are sensitive to the drug; however, at the same time it increases probability of lapatinib-resistant cell selection. The aim of this study was to verify whether combinations of lapatinib with one of isothiocyanates (sulforaphane, erucin or sulforaphene), targeting different levels of HER2 signaling pathway, exert stronger cytotoxic effect than therapy targeting the receptor only, using heterogeneous populations consisting of lapatinib-sensitive and lapatinib-resistant breast cancer cells.
View Article and Find Full Text PDFNearly 25% of all breast cancer is characterized by overexpression of HER2 (human epidermal growth factor receptor 2) which leads to overactivation of prosurvival signal transduction pathways, especially through Akt-mTOR-S6K kinases, and results in enhanced proliferation, migration, induction of angiogenesis, and apoptosis inhibition. Anti-HER2 targeted therapies, such as specific monoclonal antibodies or small-molecule tyrosine kinase inhibitors, even in combination, still seem to be insufficient due to incidence of primary or acquired resistance and prevalence of serious side-effects of these drugs. We assumed that combination of compounds that target different levels of the above-mentioned signal transduction pathway might be more effective in eradication of breast cancer cells.
View Article and Find Full Text PDFPurpose: Cancer development and resistance to chemotherapy correlates with aberrant activity of mitogenic pathways. In breast cancers, pro-survival PI3K-Akt-mTOR-S6K1 [corrected] signaling pathway is often hyperactive due to overexpression of genes coding for growth factors or estrogen receptors, constitutive activation of PI3K or Akt and loss of PTEN, a negative regulator of the pathway. Since epidemiologic as well as rodent tumor studies indicate that sulforaphane (SFN), a constituent of many edible cruciferous vegetables, might be a potent inhibitor of mammary carcinogenesis, we analyzed the response of four breast cancer cell lines representing different abnormalities in ErbB2/ER-PI3K-Akt-mTOR-S6K1[corrected] signaling pathway to this compound.
View Article and Find Full Text PDF