Publications by authors named "Angelika Jamnig"

Bone-derived stroma cells contain a rare subpopulation, which exhibits enhanced stemness characteristics. Therefore, this particular cell type is often attributed the mesenchymal stem cell (MSC). Due to their high proliferation potential, multipotential differentiation capacity, and immunosuppressive properties, MSCs are now widely appreciated for cell therapeutic applications in a multitude of clinical aspects.

View Article and Find Full Text PDF

The potential of mesenchymal stem cells (MSCs) to regenerate damaged tissue is well documented, as this specialized progenitor cell type exhibits superior cellular properties, and would allow medical as well as ethical limitations to be overcome. By now, MSCs have been successfully introduced in manifold experimental approaches within the newly defined realm of Regenerative Medicine. Advanced methods for in vitro cell expansion, defined induction of distinct differentiation processes, 3-dimensional culture on specific scaffold material, and tissue engineering approaches have been designed, and many clinical trials not only have been launched, but recently could be completed.

View Article and Find Full Text PDF

Irradiation impacts on the viability and differentiation capacity of tissue-borne mesenchymal stem cells (MSC), which play a pivotal role in bone regeneration. As a consequence of radiotherapy, bones may develop osteoradionecrosis. When irradiating human bone-derived MSC in vitro with increasing doses, the cells' self-renewal capabilities were greatly reduced.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy.

View Article and Find Full Text PDF

Regeneration, tissue remodeling, and organ repair after injury, which rely on the regulated activity of tissue-borne stem cells, become increasingly compromised with advancing age. Mesenchymal stroma cells were isolated from bone of differently aged healthy donors. The rare population of mesenchymal stem cells (MSCs) contained in the primary cell isolates barely declined in number, yet the stem cells displayed diminished long-term proliferation potential relative to the donor age and the expression of vascular cell adhesion molecule-1 (VCAM-1; CD106) was elevated on primary MSCs.

View Article and Find Full Text PDF

The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP(+) capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated genetic factors involved in cellular aging using various human cell models and gathered their findings into the GiSAO database.
  • They discovered new candidate genes linked to cellular aging that were previously unassociated, along with new pathways that might influence the aging process.
  • Functional experiments confirmed several of these candidate genes, and further testing in yeast demonstrated how deleting specific genes could either shorten or extend lifespan, revealing evolutionarily conserved mechanisms of aging.
View Article and Find Full Text PDF

The prospective clinical use of multipotent mesenchymal stromal stem cells (MSC) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. However, the challenges and risks for cell-based therapies are multifaceted. The risks for patients receiving stem cells, which have been expanded in vitro in the presence of xenogenic compounds, can hardly be anticipated and methods for the culture and manipulation of "safe" MSC ex vivo are being investigated.

View Article and Find Full Text PDF

During the lifetime of an adult organism, stem cells face extrinsic and intrinsic aging. Mesenchymal stem cells (MSC) can be expanded in culture, and the proliferation potential of individual cell isolates before growing senescent appear to be dependent on fitness and age of the donor, respectively. To date no molecular markers are available, which specifically reflect the degree of cellular aging in a population of MSC.

View Article and Find Full Text PDF

SUMMARY: In contrast to stem cells of embryonic origin, autologous tissue-specific stem cells are easier to introduce into the clinical practice. In this context, molecular and cellular changes, which alter tissue-specific stem cell properties with age, are of particular interest since elderly patients represent the main target group for cell-based therapies. The clinical use of mesenchymal stem cells is an emerging field, especially because this stem cell type appears to be amenable for the treatment of a large number of diseases, such as non-healing bone defects and fractures, inflammatory relief during arthritis, and the repair of suspensory ligament tears.

View Article and Find Full Text PDF