J Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2022
Cryptochromes are photolyase-related blue-light receptors acting as core components of the mammalian circadian clock in the cell nuclei. One or more members of the cryptochrome protein family are also assumed to play a role in avian magnetoreception, but the primary sensory molecule in the retina of migratory birds that mediates light-dependent magnetic compass orientation has still not been identified. The mRNA of cryptochrome 2 (Cry2) has been reported to be located in the cell nuclei of the retina, but Cry2 localisation has not yet been demonstrated at the protein level.
View Article and Find Full Text PDFThe primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye.
View Article and Find Full Text PDFMigratory birds can sense the Earth's magnetic field and use it for orientation over thousands of kilometres. A light-dependent radical-pair mechanism associated with the visual system is currently discussed as the underlying mechanism of the magnetic compass sense. The blue light receptor cryptochrome 4 (Cry4) is considered as the most likely primary sensory protein that detects the geomagnetic field.
View Article and Find Full Text PDFBirds seem to use a light-dependent, radical-pair-based magnetic compass. In vertebrates, cryptochromes are the only class of proteins that form radical pairs upon photo-excitation. Therefore, they are currently the only candidate proteins for light-dependent magnetoreception.
View Article and Find Full Text PDFCryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds.
View Article and Find Full Text PDFX-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is a clinically heterogeneous disease that can manifest as devastating inflammatory cerebral demyelination (CALD) leading to death of affected males. Currently, the only curative treatment is allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT is only effective when performed at an early stage because the inflammation may progress for eighteen months after HSCT.
View Article and Find Full Text PDFX-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disease caused by mutations in the ABCD1 gene, encoding a member of the peroxisomal ABC transporter family. The ABCD1 protein transports CoA-activated very long-chain fatty acids (VLCFAs) into peroxisomes for degradation via β-oxidation. In the severest form, X-ALD patients suffer from inflammatory demyelination of the brain.
View Article and Find Full Text PDF