Publications by authors named "Angelika A Krivenko"

Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that contains a universally conserved, catalytically active RNA component. RNase P RNA requires divalent metal ions for folding, substrate binding, and catalysis. Despite recent advances in understanding the structure of RNase P RNA, no comprehensive analysis of metal-binding sites has been reported, in part due to the poor crystallization properties of this large RNA.

View Article and Find Full Text PDF

The x-ray crystal structure of a 417-nt ribonuclease P RNA from Bacillus stearothermophilus was solved to 3.3-A resolution. This RNA enzyme is constructed from a number of coaxially stacked helical domains joined together by local and long-range interactions.

View Article and Find Full Text PDF

The structure of RNase P protein from the hyperthermophilic bacterium Thermotoga maritima was determined at 1.2-A resolution by using x-ray crystallography. This protein structure is from an ancestral-type RNase P and bears remarkable similarity to the recently determined structures of RNase P proteins from bacteria that have the distinct, Bacillus type of RNase P.

View Article and Find Full Text PDF

Ribonuclease P (RNase P), the ubiquitous endonuclease that catalyzes maturation of the 5'-end of tRNA in bacteria, is a ribonucleoprotein particle composed of one large RNA and one small protein. Two major structural types of bacterial RNase P RNA have been identified by phylogenetic comparative analysis: the A (ancestral) and B (Bacillus) types. The RNase P protein from Thermotoga maritima, a hyperthermophilic bacterium with an A-type RNase P RNA, has been expressed in Escherichia coli.

View Article and Find Full Text PDF