Publications by authors named "Angelicque White"

Article Synopsis
  • The study examines how the ratios of carbon, nitrogen, and phosphorus (C:N:P) in ocean particulate matter differ from the standard Redfield Ratio, impacting global carbon storage as these particles sink into the deep ocean.
  • Researchers found distinct latitudinal patterns in C:N:P ratios along a transect in the North Pacific, linking these patterns to the composition of macromolecules like proteins, carbohydrates, and lipids in oceanic particles.
  • The findings suggest that changes in phytoplankton community structure and nutrient availability are key factors driving variations in these ratios, indicating that physiological acclimation to nutrient supply is likely responsible for the observed latitudinal trends.
View Article and Find Full Text PDF

Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations.

View Article and Find Full Text PDF
Article Synopsis
  • - Planktonic calcifying organisms, specifically coccolithophores, pteropods, and foraminifera, are crucial for maintaining ocean carbonate chemistry and influencing atmospheric CO levels, yet studies quantifying their contributions to calcium carbonate production have been scarce.
  • - Research in the North Pacific reveals that coccolithophores represent around 90% of the total calcium carbonate production, while pteropods and foraminifera have a lesser role, indicating a dominance of coccolithophores in the ecosystem.
  • - The findings also suggest that much of the calcium carbonate produced in the water column dissolves before sinking, which could affect estimates of calcium carbonate production and might lead to significant changes in the ocean’s
View Article and Find Full Text PDF

The index of refraction (n) of particles is an important parameter in optical models that aims to extract particle size and carbon concentrations from light scattering measurements. An inadequate choice of n can critically affect the characterization and interpretation of optically-derived parameters, including those from satellite-based models which provide the current view of how biogeochemical processes vary over the global ocean. Yet, little is known about how n varies over time and space to inform such models.

View Article and Find Full Text PDF

Cyanobacterial N -fixing microorganisms (diazotrophs) play a critical role in nitrogen and carbon cycling in the oceans; hence, accurate measurements of diazotroph abundance are imperative for understanding ocean biogeochemistry. Marine diazotroph abundances are often assessed using qPCR of the nifH gene, a sensitive, taxa-specific, and time/cost-efficient method. However, the validity of nifH abundance as a proxy for cell concentration has recently been questioned.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how bacteriophages influence the distribution of picocyanobacteria, specifically Prochlorococcus and Synechococcus, in the North Pacific Ocean by analyzing samples from various transects over several years.
  • Researchers identified a significant hotspot of cyanophages and virus-infected picocyanobacteria approximately 550 km wide in a specific transitional area between different oceanic gyres, affecting ecosystem dynamics.
  • Findings suggest that high levels of viral infections can limit the range of Prochlorococcus while boosting Synechococcus populations, indicating that viruses play a vital role in shaping phytoplankton communities and biogeochemical processes in the ocean.
View Article and Find Full Text PDF

Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments.

View Article and Find Full Text PDF

Intricate networks of single-celled eukaryotes (protists) dominate carbon flow in the ocean. Their growth, demise, and interactions with other microorganisms drive the fluxes of biogeochemical elements through marine ecosystems. Mixotrophic protists are capable of both photosynthesis and ingestion of prey and are dominant components of open-ocean planktonic communities.

View Article and Find Full Text PDF

Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

N fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N fixing cyanobacteria (Richelia intracellularis, hereafter Richelia) form symbiosis with a few genera of diatoms. High rates of N fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses.

View Article and Find Full Text PDF

The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.

View Article and Find Full Text PDF

Light fuels photosynthesis and organic matter production by primary producers in the sunlit ocean. The quantity and quality of the organic matter produced influence community function, yet measurements of metabolites, the products of cellular metabolism, over the diel cycle are lacking. We evaluated community-level biochemical consequences of oscillations of light in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter from 15 m every 4 h over 8 days.

View Article and Find Full Text PDF

Phytoplankton transform inorganic carbon into thousands of biomolecules that represent an important pool of fixed carbon, nitrogen, and sulfur in the surface ocean. Metabolite production differs between phytoplankton, and the flux of these molecules through the microbial food web depends on compound-specific bioavailability to members of a wider microbial community. Yet relatively little is known about the diversity or concentration of metabolites within marine plankton.

View Article and Find Full Text PDF

The production of dihydrogen (H ) is an enigmatic yet obligate component of biological dinitrogen (N ) fixation. This study investigates the effect on H production by N fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O :CO ). In the absence of N , nitrogenase diverts the flow of electrons to the production of H , which becomes a measure of Total Nitrogenase Activity (TNA).

View Article and Find Full Text PDF

Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N).

View Article and Find Full Text PDF

Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation (c) and backscattering () coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass.

View Article and Find Full Text PDF

While chromium stable isotopes (δCr) have received significant attention for their utility as a tracer of oxygen availability in the distant geological past, a mechanistic understanding of modern oceanic controls on Cr and δCr is still lacking. Here we present total dissolved δCr, concentrations of Cr (III) and total dissolved Cr, and net community productivity (NCP) from the North Pacific. Chromium concentrations show surface depletions in waters with elevated NCP, but not in lower productivity waters.

View Article and Find Full Text PDF

SeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (<5 μm in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (<5 μm ESD), and picophytoplankton and nanophytoplankton (2-5 μm ESD). Data were collected in surface waters (≈5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018.

View Article and Find Full Text PDF

The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration.

View Article and Find Full Text PDF

Sunlight is the dominant control on phytoplankton biosynthetic activity, and darkness deprives them of their primary external energy source. Changes in the biochemical composition of phytoplankton communities over diel light cycles and attendant consequences for carbon and energy flux in environments remain poorly elucidated. Here we use lipidomic data from the North Pacific subtropical gyre to show that biosynthesis of energy-rich triacylglycerols (TAGs) by eukaryotic nanophytoplankton during the day and their subsequent consumption at night drives a large and previously uncharacterized daily carbon cycle.

View Article and Find Full Text PDF

spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic spp. in their planktonic state are poorly understood.

View Article and Find Full Text PDF