Publications by authors named "Angelica de Cassia Oliveira Carneiro"

Torrefaction emerges as an industrial process that increases the energy content of conventional biomass. Primary and secondary sludge are the main solid residues generated in the Effluent Treatment Plants of bleached kraft pulp mills, and can be considered as biomass. Typically, these wastes are sent to industrial landfills.

View Article and Find Full Text PDF

Coarse Woody Debris (CWDs) are constantly exposed to the natural decomposition process of wood, which can lead to a change in its physical-chemical properties. However, these changes have not yet been fully elucidated, requiring further studies to help to understand the effect of this process on CWDs degradation. Thus, the objectives of this study were: (i) verify if the decomposition affects the physical-chemical properties of the CWDs; (ii) verify if the structural chemical composition of the CWDs is altered as a function of decomposition, using immediate chemical and thermogravimetric analysis.

View Article and Find Full Text PDF

Research indicates the use of adsorbent materials to remove pollutants from wastewater and effluents, which can be obtained from renewable materials such as biomass, biopolymers (chitosan) or composites. Thus, the objective of this work was to produce and evaluate activated carbon (AC) and chitosan composite films as adsorbents of neutral red dye. AC films were produced using CO and water vapor.

View Article and Find Full Text PDF

The use of wood panel residues as biomass for energy production is feasible. Heat treatments can improve energy properties while minimizing the emission of toxic gases due to thermoset polymers used in Medium Density Fiberboard (MDF) panels. Torrefaction or pre-carbonization, a heat treatment between 200 and 300 °C with low oxygen availability accumulates carbon and lignin, decreases hygroscopicity, and increases energy efficiency.

View Article and Find Full Text PDF

Pellets are widely used for power generation because they use renewable raw material with easy storage, transport and high energy density. However, the structural fragility, disintegrating during handling, transport and storage, is one of the main problems of pellets, but the addition of binders/additives can minimize this fragility. The objective of this study was to evaluate the properties of wood pellets with the addition of starch (corn and wheat) and kraft lignin in different proportions.

View Article and Find Full Text PDF

In the context of the circular bioeconomy and cleaner production, the incorporation of the by-products of plant biomass production in the bioenergy chain is fundamental. However, lignocellulosic wastes have properties that hinder their use for the production of biofuels. This study aims to evaluate how blends of lignocellulosic wastes improve the physical, chemical, and mechanical quality of pellets destined to the industrial sector, and to identify the challenges associated with the use of agroforestry biomass as raw material for pelletizing.

View Article and Find Full Text PDF

The diversity of fungi allows for their colonisation in different environments, including wood destined for power generation, with an ability to degrade or hinder its use. Torrefaction or pre-carbonisation, a low oxygenation heat treatment with temperatures between 200 and 300 °C, accumulates carbon and lignin, decreases hygroscopicity, increases energy efficiency and reduces the wood attractiveness to xylophagous microorganisms. This work aimed to study the resistance of Eucalyptus urophylla wood chips, submitted to torrefaction temperatures of 180, 220 and 260 °C for 20 minutes, to xylophagous fungi, according to the ASTM D-2017 method (2005).

View Article and Find Full Text PDF

This study aimed to evaluate the promising feasibility of the hydrothermal pre-processing of eucalyptus wood and eucalyptus bark under organosolv and organic acid conditions to produce a highly concentrated cellulose feedstock. For that, particulate samples of both biomasses were heated in water solutions containing from 0 to 50% of ethanol and from 0 to 50 mmol.L of oxalic acid at temperatures between 140 and 180 °C.

View Article and Find Full Text PDF

This study investigated an industrial biosludge drying system using hot gases from a coal furnace, seeking to increase the solids content of the biosludge above 50% (w.b.), considered suitable for combustion in biomass boilers.

View Article and Find Full Text PDF