Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the -acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM).
View Article and Find Full Text PDFMucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities.
View Article and Find Full Text PDFSince its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is caused by a deficiency of the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) enzyme, leading to the accumulation of glycosaminoglycans (GAG), keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in cartilage and bone. This lysosomal storage disorder (LSD) is characterized by severe systemic skeletal dysplasia. To this date, none of the treatment options for the MPS IVA patients correct bone pathology.
View Article and Find Full Text PDFMucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach.
View Article and Find Full Text PDFSince its discovery as a genome editing tool, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system has opened new horizons in the diagnosis, research, and treatment of genetic diseases. CRISPR/Cas9 can rewrite the genome at any region with outstanding precision to modify it and further instructions for gene expression. Inborn Errors of Metabolism (IEM) are a group of more than 1500 diseases produced by mutations in genes encoding for proteins that participate in metabolic pathways.
View Article and Find Full Text PDFAdeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer.
View Article and Find Full Text PDF