Bioremediation with genetically modified microalgae is becoming an alternative to remove metalloids and metals such as cadmium, a contaminant produced in industrial processes and found in domestic waste. Its removal is important in several countries including Mexico, where the San Luis Potosi region has elevated levels of it. We generated a construct with a synthetic gene for γ-glutamylcysteine synthetase and employed it in the chloroplast transformation of .
View Article and Find Full Text PDFInt J Phytoremediation
September 2019
Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical-chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic.
View Article and Find Full Text PDF