Microorganisms
June 2023
This study aimed to evaluate the survival of the probiotic when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box-Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature.
View Article and Find Full Text PDFFood Sci Technol Int
January 2019
We evaluated various formulations of oil-in-water emulsions prepared from eucalyptus essential oil, for their stability and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. These formulations were developed using a response surface experimental design and analyzed with Design-Expert® 10 software. The emulsions were prepared in a colloid mill, and emulsion characterization was performed using the zeta ( ζ)-potential, droplet size distribution, and phase separation.
View Article and Find Full Text PDFNanoemulsions are useful for encapsulating nutritionally compounds of the high oleic palm oil (HOPO) including β-carotene and tocopherols. However, some nanoemulsions can be thermodynamically unstable. For this reason, it is important to understand the thermal and thermodynamic stability of nanoemulsions and to investigate both the parameters that cause, and the mechanisms associated with, the destabilization.
View Article and Find Full Text PDF