CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity.
View Article and Find Full Text PDFGene repair of CD34 hematopoietic stem and progenitor cells (HSPCs) may avoid problems associated with gene therapy, such as vector-related mutagenesis and dysregulated transgene expression. We used CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated 9) to repair a mutation in the CYBB gene of CD34 HSPCs from patients with the immunodeficiency disorder X-linked chronic granulomatous disease (X-CGD). Sequence-confirmed repair of >20% of HSPCs from X-CGD patients restored the function of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and superoxide radical production in myeloid cells differentiated from these progenitor cells in vitro.
View Article and Find Full Text PDFRecent commercial approval of cancer vaccine, demonstrating statistically significant improvement in overall survival of prostate cancer patients has spurred renewed interest in active immunotherapies; specifically, strategies that lead to enhanced biological activity and robust efficacy for dendritic cell vaccines. A simple, widely used approach to generating multivalent cancer vaccines is to load tumor whole cell lysates into dendritic cells (DCs). Current DC vaccine manufacturing processes require co-incubation of tumor lysate antigens with immature DCs and their subsequent maturation.
View Article and Find Full Text PDFExperimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive).
View Article and Find Full Text PDFUveitis is an important autoimmune disease affecting an estimated 2.3 million Americans. This disease is manifested by inflammation of the retina mediated by the infiltration of T lymphocytes that recognize "S-Antigen" (S-Ag).
View Article and Find Full Text PDF