Brain metastases are commonly found in patients that are diagnosed with primary malignancy on their lung. Lung cancer patients with brain metastasis tend to have a poor survivability, which is less than 6 months in median. Therefore, an early and effective detection system for such disease is needed to help prolong the patients' survivability and improved their quality of life.
View Article and Find Full Text PDFClassifying imbalanced data in medical informatics is challenging. Motivated by this issue, this study develops a classifier approach denoted as BSMAIRS. This approach combines borderline synthetic minority oversampling technique (BSM) and artificial immune recognition system (AIRS) as global optimization searcher with the nearest neighbor algorithm used as a local classifier.
View Article and Find Full Text PDFRecently, the use of artificial intelligence based data mining techniques for massive medical data classification and diagnosis has gained its popularity, whereas the effectiveness and efficiency by feature selection is worthy to further investigate. In this paper, we presents a novel method for feature selection with the use of opposite sign test (OST) as a local search for the electromagnetism-like mechanism (EM) algorithm, denoted as improved electromagnetism-like mechanism (IEM) algorithm. Nearest neighbor algorithm is served as a classifier for the wrapper method.
View Article and Find Full Text PDFBackground: In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data.
Results: To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier.