Chiroptical responses are valuable for the structural determination of dissymmetric molecules. However, the development of everyday applications based on chiroptical systems is yet to come. We have been earlier using axially chiral allenes for the construction of linear, cyclic, and cage-shaped molecules that present remarkable chiroptical responses.
View Article and Find Full Text PDFElectronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at the Soret region, and the thermodynamics of peroxidases are discussed. B3LYP and M06-2X density functionals with different basis sets were employed on a common molecular model of the active site (Fe-centred porphine and proximal imidazole).
View Article and Find Full Text PDFThree new spirobifluorene iridaaromatic compounds bearing electron-withdrawing or electron-donor substituents or another iridanaphthalene moiety have been synthesized and structurally characterized. Thorough experimental and theoretical evaluation revealed that these novel systems present a high thermal, air and electrochemical stability as well as low optical and electronic energy gap values with a significant redshift of the absorption maximum in the UV-Vis spectra and predicted remarkably higher first hyperpolarizabilities compared to their organic counterparts. Therefore, the combination of a metallaaromatic system with a spirobifluorene moiety leads to the design and development of new spirobifluorene derivatives.
View Article and Find Full Text PDFSpirobifluorenes are an important class of spiro compounds frequently used in the field of organic electronics. However, harnessing spiroconjugation to obtain high-performance in such structural motifs remains unexplored. We herein propose that peripheral functionalization may serve as a useful tool to control spiroconjugation in an ON/OFF manner on both chemical reactivity and photophysical properties.
View Article and Find Full Text PDFHerein, the power of multicenter electron delocalization analysis to elucidate the intricacies of concerted reaction mechanisms is brought to light by tracking the transition of [1,3] sigmatropic rearrangements from the high-barrier pericyclic mechanism in 1-butene to the barrierless pseudopericyclic mechanism in 1,2-diamino-1-nitrosooxyethane. This transition has been progressively achieved by substituting the migrating group, changing the donor and acceptor atoms, and functionalizing the alkene unit with weak and strong electron-donating and electron-withdrawing groups. Fourteen [1,3] sigmatropic reactions with electronic energy barriers ranging from 1 to 89 kcal/mol have been investigated.
View Article and Find Full Text PDFPolycyclic iridaaromatic compounds are of great interest not only because of the contributions made in "aromatic chemistry", but also because of the possibility of improving the results of the applications of the corresponding organic analogues in different fields. Therefore, understanding the requirements necessary to build on demand this type of compound with specific properties is of great importance. In this work, the keys to successfully synthesize iridaaromatic complexes via methoxyalkenylcarbenes are established.
View Article and Find Full Text PDFSome of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation.
View Article and Find Full Text PDFThe Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians.
View Article and Find Full Text PDFSeveral theoretical studies have proposed strategies to generate helical molecular orbitals (Hel-MOs) in [n]cumulenes and oligoynes. While chiral even-[n] cumulenes feature Hel-MOs, odd-[n] cumulenes may also present them if the terminal groups lie in different planes. However, the proposed systems have been either experimentally unfeasible or resulted in opposite pseudo-degenerated Hel-MOs.
View Article and Find Full Text PDFAn extraordinary new family of molecular junctions, inaccurately referred to as "anti-Ohmic" wires in the recent literature, has been proposed based on theoretical predictions. The unusual electron transport observed for these systems, characterized by a reversed exponential decay of their electrical conductance, might revolutionize the design of molecular electronic devices. This behavior, which has been associated with intrinsic diradical nature, is reexamined in this work.
View Article and Find Full Text PDFSpirobifluorene derivatives find use in many end-user applications. Therefore, further expansion of their scope is the focus of many research studies. However, although the optical properties of spirobifluorenes can be greatly tuned through incorporation of metal complexes, to date, spirobifluorene metallaaromatics remain unknown.
View Article and Find Full Text PDFThe high sensitivity of chiroptical responses to conformational changes and supramolecular interactions has prompted an increasing interest in the development of chiroptical applications. However, prediction of and understanding the chiroptical responses of the necessary large systems may not be affordable for calculations at high levels of theory. In order to facilitate the development of chiroptical applications, methodologies capable of evaluating the chiroptical responses of large systems are necessary.
View Article and Find Full Text PDFThe mechanism of the decomposition of ethyl and ethyl 3-phenyl glycidate in gas phase was studied by density functional theory (DFT) and MP2 methods. A proposed mechanism for the reaction indicates that the ethyl side of the ester is eliminated as ethylene through a concerted six-membered cyclic transition state, and the unstable intermediate glycidic acid decarboxylates rapidly to give the corresponding aldehyde. Two possible pathways for glycidic acid decarboxylation were studied: one via a five-membered cyclic transition state, and the other via a four-membered cyclic transition state.
View Article and Find Full Text PDFThe effect of microhydration on the interaction of guanidinium cation with benzene has been studied by employing ab initio calculations. Four different structural arrangements were considered for the guanidinium···benzene interaction to which up to six water molecules were added. T-shaped structures are usually the most stable, but as water molecules are included the energy differences with the parallel structures decrease, reaching a point where parallel complexes are even more stable than T-shaped ones.
View Article and Find Full Text PDFThe characteristics of the interaction between water and hydrogen sulfide with indole and a series of analogs obtained by substituting the NH group of indole by different heteroatoms have been studied by means of ab initio calculations. In all cases, minima were found corresponding to structures where water and hydrogen sulfide interact by means of X-H···π contacts. The interaction energies for all these π complexes are quite similar, spanning from -13.
View Article and Find Full Text PDFThis work is focused in three topical subjects: intermolecular interactions, metal ions, and aromaticity. A comprehensive MP2/6-31 + G and B3LYP/6-31 + G study of the influence of cation-π interactions on the aromatic character of phosphole was conducted. For this purpose, the structures of complexes were optimized at both theoretical level and different magnetic properties were evaluated.
View Article and Find Full Text PDFA comprehensive MP2/6-311 + G(d,p) and B3LYP/6-311 + G(d,p) study of the aromatic character of phospholes, P(n)(CH)(4-n )PH with n = 0-4 was conducted. For this purpose, the structures for these compounds were optimized at both theoretical levels and different magnetic properties (magnetic susceptibility anisotropy, χ(anis), and the nucleus-independent chemical shifts, NICS) were evaluated. For comparison, these magnetic properties were also calculated in the optimized structures with planarity constraints.
View Article and Find Full Text PDFThe mechanism for the decarbonylation of (E)-2-butenal and (E)-2-methyl-3-phenyl-2-propenal was studied with different levels of ab initio and DFT methods. Reactants, products and transition structures were optimized for two kinds of reaction channel: a one-step reaction which involves a three-membered cyclic transition state, and a two-step reaction which involves an initial four-membered cyclic transition state. According to our calculations, these two possible mechanisms entail similar energetic costs, and there are only small differences depending on the reactant.
View Article and Find Full Text PDFA computational study was carried out for studying the characteristics of the interaction between azulene and water or hydrogen sulfide. In azulene..
View Article and Find Full Text PDFThe characteristics of the interaction between the pi cloud of naphthalene and up to two H2O or H2S molecules were studied. Calculations show that clusters formed by naphthalene and one H2O or H2S molecule have similar geometric features, and also present similar interaction energies. Our best estimates for the interaction energy amount to -2.
View Article and Find Full Text PDFThe characteristics of the interaction between phenol and acetonitrile, methyl fluoride and methyl chloride were studied. The most stable structures for clusters containing one or two CH3X molecules and one phenol moiety were located by means of ab initio and density functional theory calculations. Phenol-acetonitrile dimer presents two almost equally stable structures; one of them is a typical linearly hydrogen bonded minimum, whereas in the other one, a C-H.
View Article and Find Full Text PDFCycloaddition reactions of ethylene and formaldehyde to buta-1,3-dien-1-one and derivatives were studied by performing a density functional theory study with the 6-31+G* basis set. Reactants, products, and transition states for each reaction were localized, and the path connecting reactants and products was also obtained. Magnetic properties were evaluated along the reaction path to elucidate the characteristics of the reactions studied.
View Article and Find Full Text PDFA comprehensive B3LYP/6-31+G* study on the electrocyclization of 1,2,4,6-heptatetraene analogues was conducted. Starting from the cyclization of (2Z)-2,4,5-hexatrienal, a pericyclic disrotatory process favored by the assistance of a electron lone pair, we incorporated small modifications in its molecular structure to obtain a truly pseudopericyclic process. To this purpose electronegative atoms (fluorine and nitrogen) were added to give a more electrophilic character on the carbon atom which is attacked by the electron lone pair of the oxygen atom.
View Article and Find Full Text PDF[reactions: see text] Electrocyclization reactions of (3Z)-1,3,5-hexatrienone and nitrogen derivatives were studied by performing density functional theory (DFT) calculations together with the 6-31+G* basis set. Reactants, products, and transition states for each reaction were localized and the IRC connecting reactants and products was also obtained. Magnetic properties were evaluated along the reaction path to elucidate the characteristics of the reactions studied.
View Article and Find Full Text PDF