This research addresses the power flow analysis in bipolar asymmetric direct current (DC) networks by applying Broyden's numerical method. This general successive approximations method allows for a simple Newton-based recursive formula to reach the roots of multiple nonlinear equations. The main advantage of Broyden's approach is its simple but efficient structure which can be applied to real complex nonlinear equations.
View Article and Find Full Text PDFThis paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy losses costs. To represent the electrical behavior of the distribution networks, a power flow formulation is used which includes voltages, currents, and power as variables via incidence matrix representation.
View Article and Find Full Text PDFThis paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure.
View Article and Find Full Text PDF