Publications by authors named "Angeles Cordon"

The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010).

View Article and Find Full Text PDF

The tearing of the collagen fibers of biological materials utilized in implants or bioprostheses is an important, and sometimes early cause of the failure of these devices. We studied the force necessary to propagate a tear in a biomaterial, pericardium from young bulls, and the influence of the suture. An Elmendorf pendulum capable of measuring the force necessary to tear a given length of tissue was employed.

View Article and Find Full Text PDF

The durability of prosthetic heart valve leaflets made of biological materials is limited. A tear in the biomaterial accelerates their early failure, but microtearing of the collagen fibers may be responsible for their medium-term failure. We studied the force necessary to propagate tearing in two biomaterials: ostrich and calf pericardium.

View Article and Find Full Text PDF

We studied the mechanical behavior in response to tensile stress of samples of ostrich pericardium bonded with a cyanoacrylate glue or sewn with a rectangular, overlapping suture that was subsequently sealed with the same bioadhesive. Seventy-two trials were performed in three series of 24 samples each: series AG, glued with an overlap of 1 cm2; series ASG, sewn with a rectangular, overlapping suture and sealed; and series AC, control samples that were left intact. The mean stress at rupture in series AG (glued) was 0.

View Article and Find Full Text PDF

The tearing of the valve leaflet of a cardiac bioprosthesis can cause early failure of this device, which is employed to replace a diseased native valve. This report involves the study of the behavior of 312 tissue samples (152 of calf pericardium and 160 of ostrich pericardium) treated with glutaraldehyde and subsequently subjected to tear testing. The samples were cut in the two principal directions: longitudinally, or root to apex, and transversely.

View Article and Find Full Text PDF