Acellular multivalent vaccines for pertussis (DTaP and Tdap) prevent symptomatic disease and infant mortality, but immunity to Bordetella pertussis infection wanes significantly over time resulting in cyclic epidemics of pertussis. The messenger RNA (mRNA) vaccine platform provides an opportunity to address complex bacterial infections with an adaptable approach providing Th1-biased responses. In this study, immunogenicity and challenge models were used to evaluate the mRNA platform with multivalent vaccine formulations targeting both B.
View Article and Find Full Text PDFColonization of the gut and airways by pathogenic bacteria can lead to local tissue destruction and life-threatening systemic infections, especially in immunologically compromised individuals. Here, we describe an mRNA-based platform enabling delivery of pathogen-specific immunoglobulin A (IgA) monoclonal antibodies into mucosal secretions. The platform consists of synthetic mRNA encoding IgA heavy, light, and joining (J) chains, packaged in lipid nanoparticles (LNPs) that express glycosylated, dimeric IgA with functional activity in vitro and in vivo.
View Article and Find Full Text PDFSecretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract.
View Article and Find Full Text PDFPeyer's patches are organized gut-associated lymphoid tissues (GALT) in the small intestine and the primary route by which particulate antigens, including viruses and bacteria, are sampled by the mucosal immune system. Antigen sampling occurs through M cells, a specialized epithelial cell type located in the follicle-associated epithelium (FAE) that overlie Peyer's patch lymphoid follicles. While Peyer's patches play an integral role in intestinal homeostasis, they are also a gateway by which enteric pathogens, like Salmonella enterica serovar Typhimurium (STm), cross the intestinal barrier.
View Article and Find Full Text PDFMany bacterial pathogens secrete AB toxins comprising two functionally distinct yet complementary "A" and "B" subunits to benefit the pathogens during infection. The lectin-like pentameric B subunits recognize specific sets of host glycans to deliver the toxin into target host cells. Here, we offer the molecular mechanism by which neutralizing antibodies, which have the potential to bind to all glycan-receptor binding sites and thus completely inhibit toxin binding to host cells, are inhibited from exerting this action.
View Article and Find Full Text PDFEliminating diarrheal diseases as a leading cause of childhood morbidity and mortality in low- and middle-income countries (LMICs) will require multiple intervention strategies. In this review, we spotlight a series of preclinical studies investigating the potential of orally administered monoclonal secretory IgA (SIgA) antibodies (MAbs) to reduce disease associated with three enteric bacterial pathogens: , enterotoxigenic (ETEC), and invasive serovar Typhimurium. IgA MAbs targeting bacterial surface antigens (flagella, adhesins, and lipopolysaccharide) were generated from mice, humanized mice, and human tonsillar B cells.
View Article and Find Full Text PDFNearly all clinical isolates of Typhi, the cause of typhoid fever, are antibiotic resistant. All Typhi isolates secrete an AB exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant Typhi secretes typhoid toxin continuously during infection regardless of antibiotic treatment.
View Article and Find Full Text PDFAs the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS).
View Article and Find Full Text PDFNon-typhoidal Salmonella enterica strains, including serovar Typhimurium (STm), are an emerging cause of invasive disease among children and the immunocompromised, especially in regions of sub-Saharan Africa. STm invades the intestinal mucosa through Peyer's patch tissues before disseminating systemically. While vaccine development efforts are ongoing, the emergence of multidrug resistant strains of STm affirms the need to seek alternative strategies to protect high-risk individuals from infection.
View Article and Find Full Text PDFObjective: Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR, an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is unknown.
View Article and Find Full Text PDF