Publications by authors named "Angelakis D"

Article Synopsis
  • Topological data analysis (TDA) is a method used to extract useful topological information from complex datasets, particularly in classical systems, to identify chaotic behavior.
  • The paper discusses a new topological pipeline specifically designed for analyzing quantum dynamics, adapting techniques from classical TDA and utilizing single quantum trajectory data.
  • The method is applied to a Kerr-nonlinear cavity system, allowing researchers to distinguish between regular and chaotic phases with minimal measurements.
View Article and Find Full Text PDF

We employ the Su-Schrieffer-Heeger model in elastic polymer waveguide arrays to design and realize traveling topologically protected modes. The observed delocalization of the optical field for superluminal defect velocities agrees well with theoretical descriptions. We apply mechanical strain to modulate the lattices' coupling coefficient.

View Article and Find Full Text PDF

Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers but require extensive data and computational resources to train. We show how a topological data analysis technique, persistent homology, can be used to rapidly and reliably identify qualitative features in experimental image data.

View Article and Find Full Text PDF

Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field-the Hofstadter butterfly.

View Article and Find Full Text PDF

A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components.

View Article and Find Full Text PDF

We provide an analytic solution to the problem of system-bath dynamics under the effect of high-frequency driving that has applications in a large class of settings, such as driven-dissipative many-body systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time evolution operator of the full system, including bath degrees of freedom, without weak-coupling or Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a flexible simulation procedure of nontrivial Hamiltonians.

View Article and Find Full Text PDF

We show how to implement topological or Thouless pumping of interacting photons in one-dimensional nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space and time. The interplay between the interactions and the adiabatic modulations enables robust transport of Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model and study its topological properties and its protection to noise.

View Article and Find Full Text PDF

In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena.

View Article and Find Full Text PDF

In this work we study a one-dimensional lattice of Lipkin-Meshkov-Glick models with alternating couplings between nearest-neighbors sites, which resembles the Su-Schrieffer-Heeger model. Typical properties of the underlying models are present in our semiclassical-topological hybrid system, allowing us to investigate an interplay between semiclassical bifurcations at mean-field level and topological phases. Our results show that bifurcations of the energy landscape lead to diverse ordered quantum phases.

View Article and Find Full Text PDF

We propose an optical simulation of dissipation-induced correlations in one-dimensional (1D) interacting bosonic systems, using a two-dimensional (2D) array of linear photonic waveguides and only classical light. We show that for the case of two bosons in a 1D lattice, one can simulate on-site two-body dissipative dynamics using a linear 2D waveguide array with lossy diagonal waveguides. The intensity distribution of the propagating light directly maps out the wave function, allowing one to observe the dissipation-induced correlations with simple measurements.

View Article and Find Full Text PDF

The Jackiw-Rebbi model describes a one-dimensional Dirac field coupled to a soliton field and can be equivalently thought of as a model describing a Dirac field with a spatially dependent mass term. Neglecting the dynamics of the soliton field, a kink in the background soliton profile yields a topologically protected zero-energy mode for the field, which in turn leads to charge fractionalisation. We show here that the model, in the first quantised form, can be realised in a driven slow-light setup, where photons mimic the Dirac field and the soliton field can be implemented-and tuned-by adjusting optical parameters such as the atom-photon detuning.

View Article and Find Full Text PDF

One of the most well known relativistic field theory models is the Thirring model. Its realization can demonstrate the famous prediction for the renormalization of mass due to interactions. However, experimental verification of the latter requires complex accelerator experiments whereas analytical solutions of the model can be extremely cumbersome to obtain.

View Article and Find Full Text PDF

In this work we show that light-matter excitations (polaritons) generated inside a hollow-core one-dimensional fiber filled with two types of atoms, can exhibit Luttinger liquid behavior. We first explain how to prepare and drive this quantum-optical system to a strongly interacting regime, described by a bosonic two-component Lieb-Liniger model. Utilizing the connection between strongly interacting bosonic and fermionic systems, we then show how spin-charge separation could be observed by probing the correlations in the polaritons.

View Article and Find Full Text PDF

We propose a scheme to realize the fractional quantum Hall system with atoms confined in a two-dimensional array of coupled cavities. Our scheme is based on simple optical manipulation of atomic internal states and intercavity hopping of virtually excited photons. It is shown that, as well as the fractional quantum Hall system, any system of hard-core bosons on a lattice in the presence of an arbitrary Abelian vector potential can be simulated solely by controlling the phases of constantly applied lasers.

View Article and Find Full Text PDF

The purpose of this study was to determine whether the posttreatment changes in patients with Class II, Division 1 malocclusions who were treated with either extraction or nonextraction express similar trends in the male and female patients. The material for this investigation was obtained from the records available in the Graduate Orthodontic Clinic at the University of Iowa. Ninety-one patients were treated for their Class II, Division 1 malocclusions, 44 subjects (21 males and 23 females) had four first premolar extractions and 47 subjects (20 males and 27 females) were treated with nonextraction.

View Article and Find Full Text PDF