Publications by authors named "Angela Whittington"

Objectives: Although ankle sprains have the highest recurrence rate of any musculoskeletal injury, objective estimates of when an athlete is likely to return-to-play (RTP) are unknown. The purpose was to compare time to return-to-play probability timelines for new and recurrent ankle sprains in interscholastic athletes.

Design: Observational.

View Article and Find Full Text PDF

Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function.

View Article and Find Full Text PDF

Microtubule-associated proteins of the highly conserved XMAP215/Dis1 family promote both microtubule growth and shrinkage, and move with the dynamic microtubule ends. The plant homologue, MOR1, is predicted to form a long linear molecule with five N-terminal TOG domains. Within the first (TOG1) domain, the mor1-1 leucine to phenylalanine (L174F) substitution causes temperature-dependent disorganization of microtubule arrays and reduces microtubule growth and shrinkage rates.

View Article and Find Full Text PDF

MICROTUBULE ORGANIZATION 1 (MOR1) is a plant member of the highly conserved MAP215/Dis1 family of microtubule-associated proteins. Prior studies with the temperature-sensitive mor1 mutants of Arabidopsis (Arabidopsis thaliana), which harbor single amino acid substitutions in an N-terminal HEAT repeat, proved that MOR1 regulates cortical microtubule organization and function. Here we demonstrate by use of live cell imaging and immunolabeling that the mor1-1 mutation generates specific defects in the microtubule arrays of dividing vegetative cells.

View Article and Find Full Text PDF