Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography.
View Article and Find Full Text PDFPurpose: The A1AR antagonist 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([(18)F]CPFPX) has recently been shown to be a suitable radiotracer for quantitative in vivo imaging of the A1 adenosine receptor (A1AR) in rats. The present study evaluates the reproducibility of non-invasive longitudinal A1AR studies with [(18)F]CPFPX and a dedicated small animal positron emission tomography (PET) scanner.
Procedures: Twelve male Sprague Dawley rats underwent four repeated dynamic PET scans with a bolus injection of [(18)F]CPFPX.
Introduction: The selective 5-hydroxytryptamine type 2a receptor (5-HT(2A)R) radiotracer [(18)F]altanserin is a promising ligand for in vivo brain imaging in rodents. However, [(18)F]altanserin is a substrate of P-glycoprotein (P-gp) in rats. Its applicability might therefore be constrained by both a differential expression of P-gp under pathological conditions, e.
View Article and Find Full Text PDFUnlabelled: In vivo imaging of the A1 adenosine receptor (A1AR) using (18)F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ((18)F-CPFPX) and PET has become an important tool for studying physiologic and pathologic states of the human brain. However, dedicated experimental settings for small-animal studies are still lacking. The aim of the present study was therefore to develop and evaluate suitable pharmacokinetic models for the quantification of the cerebral A1AR in high-resolution PET.
View Article and Find Full Text PDFPurpose: While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats.
Procedures: Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions.