Human mesenchymal stromal cells (MSCs) are promising candidates for cell therapy due to their ease of isolation and expansion and their ability to secrete antiapoptotic, pro-angiogenic, and immunomodulatory factors. Three-dimensional (3D) aggregation "self-activates" MSCs to augment their pro-angiogenic and immunomodulatory potential, but the microenvironmental features and culture parameters that promote optimal MSC immunomodulatory function in 3D aggregates are poorly understood. Here, we generated MSC aggregates via three distinct methods and compared them with regard to their (a) aggregate structure and (b) immunomodulatory phenotype under resting conditions and in response to inflammatory stimulus.
View Article and Find Full Text PDFTranslation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation.
View Article and Find Full Text PDFGene delivery to primary human cells is a technology of critical interest to both life science research and therapeutic applications. However, poor efficiencies in gene transfer and undesirable safety profiles remain key limitations in advancing this technology. Here, we describe a materials-based approach whereby application of a bioresorbable mineral coating improves microparticle-based transfection of plasmid DNA lipoplexes in several primary human cell types.
View Article and Find Full Text PDFStem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.
View Article and Find Full Text PDFUnlabelled: Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels.
View Article and Find Full Text PDFConjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) are a widely available and clinically relevant cell type with a host of applications in regenerative medicine. Current clinical expansion methods can lead to selective changes in hMSC phenotype potentially resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding the influence of cell-material interactions on stem cell behavior.
View Article and Find Full Text PDFUnderstanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves "biologically driven assembly," in which stem cells are encouraged to largely define their own morphogenesis processes.
View Article and Find Full Text PDFIn pediatric patients requiring vascular reconstruction, the development of a cell-based tissue-engineered vascular patch (TEVP) has great potential to overcome current issues with nonliving graft materials. Determining the optimal cell source is especially critical to TEVP success. In this study, we compared the ability of human aortic smooth muscle cells (HuAoSMCs) and human mesenchymal stem cells (hMSCs) to form cell sheets on thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) substrates.
View Article and Find Full Text PDFChildren suffering from congenital heart defects (CHD) often require vascular reconstruction. Pediatric patients would greatly benefit from a cell-based tissue engineered vascular patch (TEVP) that has potential for growth. As artery structure and function are intimately linked, mimicking native tissue organization is an important design consideration.
View Article and Find Full Text PDF