Carbon dots are carbon-based nanoparticles renowned for their intense light-emitting capabilities covering the whole visible light range. Achieving carbon dots emitting in the red region with high efficiency is extremely relevant due to their huge potential in biological applications and in optoelectronics. Currently, photoluminescence in such an energy interval is often associated with polyheterocyclic molecular domains forming during the synthesis that, however, present low emission efficiency and issues in controlling the optical features.
View Article and Find Full Text PDFCarbon dots (CDs) are a family of fluorescent nanoparticles displaying a wide range of interesting properties, which make them attractive for potential applications in different fields like bioimaging, photocatalysis, and many others. However, despite many years of dedicated studies, wide variations exist in the literature concerning the reported photostability of CDs, and even the photoluminescence mechanism is still unclear. Furthermore, an increasing number of recent studies have highlighted the photobleaching (PB) of CDs under intense UV or visible light beams.
View Article and Find Full Text PDFThe origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challenging task.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are a class of porous materials that show promise in the removal of toxic industrial chemicals (TICs) from contaminated airstreams, though their development for this application has so far been hindered by issues of water stability and the wide availability and low cost of traditionally used activated carbons. Here a series of three MOF-activated carbon composite materials with different MOF to carbon ratios are prepared by growing STAM-17-OEt crystals inside the commercially available BPL activated carbon. The composite materials display excellent water stability and increased uptake of ammonia gas when compared to unimpregnated carbon.
View Article and Find Full Text PDF