Publications by authors named "Angela Sena-Lopes"

Trichomonas vaginalis is the etiologic agent of trichomoniasis, a worldwide distributed sexually transmitted infection (STI) that affects the genitourinary tract. Even though this disease already has a treatment in the prescription of drugs of the 5-nitroimidazole class, described low treatments adhesion, adverse side effects and cases of resistant isolates demonstrate the need for new formulations. With this in mind, chalcones emerge as a potential alternative to be tested, being compounds widely distributed in nature, easy to chemically synthesize and presenting several biological activities already reported.

View Article and Find Full Text PDF

Trichomoniasis is a sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Currently, trichomoniasis is treated with the class of nitroimidazoles, namely, metronidazole; however, resistant isolates and strains have been reported. The compounds derived from benzofuroxan are biologically active heterocycles.

View Article and Find Full Text PDF

Algal extracts are sources of bioactive substances with applications in the development of novel alternative drugs against several diseases, including trichomoniasis sexually transmitted infection caused by Trichomonas vaginalis. Factors such as clinical failures and resistant strains limit the success of the existing drugs available for treating this disease. Therefore, searching for viable alternatives to these drugs is essential for the treatment of this disease.

View Article and Find Full Text PDF

Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested.

View Article and Find Full Text PDF

Purpose: rCP01850, rCP09729 and rCP00660 proteins from Corynebacterium pseudotuberculosis, predicted as the three best targets to be used in vaccines against Caseous Lymphadenitis in mature epitope density (MED) analysis were tested as vaccinal targets in association to saponin as adjuvant.

Methodology: rCP00660, rCP09720 and rCP01850 were expressed in E. coli and purified for immunization assay.

View Article and Find Full Text PDF

The immunomodulatory properties of Brazilian red propolis (BRP) have been already described. Also, propolis have been proved to have antibacterial activity on Corynebacterium pseudotuberculosis. An adjuvant effect of red propolis oil was able to induce a significant anti-C.

View Article and Find Full Text PDF

Toxocara spp. are responsible for causing toxocariasis, a zoonotic disease of global significance. In some countries of South America, toxocariasis is considered the most prevalent human helminthic infection.

View Article and Find Full Text PDF

Background: Trichomonas vaginalis is the causative agent of trichomoniasis, which is one of the most common sexually transmitted diseases worldwide. Trichomoniasis has a high incidence and prevalence and is associated with serious complications such as HIV transmission and acquisition, pelvic inflammatory disease and preterm birth. Although trichomoniasis is treated with oral metronidazole (MTZ), the number of strains resistant to this drug is increasing (2.

View Article and Find Full Text PDF

The treatment for trichomoniasis, based on 5'-nitroimidazol agents, has been presenting failures related to allergic reactions, side effects, and the emergence of resistant isolates. There are no alternative drugs approved for the treatment of these cases; thus, the search for new active molecules is necessary. In this scenario, chalcones have been extensively studied for their promising biological activities.

View Article and Find Full Text PDF

Toxocara spp. are responsible for causing toxocariasis, a zoonotic disease of global importance, which is difficult to treat as the available drugs have moderate efficacy in the clinical resolution of the disease. A promising alternative to the existing drugs is Propolis, which is known for having biological and pharmacological properties such as antiparasitic, antioxidant, and antitumor activities.

View Article and Find Full Text PDF

Trichomoniasis is a parasitic infection caused by Trichomonas vaginalis and it is considered to be the most common non-viral sexually transmitted infection in the world. Since the 1960s, nitroimidazoles such as metronidazole are the drugs of choice for the treatment of trichomoniasis, but many adverse effects and allergic reactions may result from their use. Reports of metronidazole-resistant infections also highlight the importance for the search of new anti-T.

View Article and Find Full Text PDF

Due to the growing population of pets, especially homeless dogs and cats, zoonoses still represent a significant public health problem. Toxoplasma gondii and Toxocara spp. are epidemiologically important zoonotic agents as they are etiological factors of human toxoplasmosis and toxocariasis, respectively.

View Article and Find Full Text PDF

Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS).

View Article and Find Full Text PDF

The increased prevalence of metronidazole-resistant infections has resulted in a search for alternative drugs for the treatment of trichomoniasis. In the present study, we report the preparation and in vitro activity of three 1,3-dioxolanes that contain tellurium (PTeDOX 01, PTeDOX 02, and PTeDOX 03) against Trichomonas vaginalis. Six concentrations of these compounds were analyzed for in vitro activity against ATCC 30236 isolate of T.

View Article and Find Full Text PDF