Publications by authors named "Angela Re"

Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e.

View Article and Find Full Text PDF

Associating one or more Gene Ontology (GO) terms to a protein means making a statement about a particular functional characteristic of the protein. This association provides scientists with a snapshot of the biological context of the protein activity. This paper introduces PRONTO-TK, a Python-based software toolkit designed to democratize access to Neural-Network based complex protein function prediction workflows.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis.

View Article and Find Full Text PDF

Microalgae biotechnology is hampered by the high production costs and the massive usage of water during large-volume cultivations. These drawbacks can be softened by the production of high-value compounds and by adopting metabolic engineering strategies to improve their performances and productivity. Today, the most sustainable approach is the exploitation of industrial wastewaters for microalgae cultivation, which couples valuable biomass production with water resource recovery.

View Article and Find Full Text PDF

Major advances in mastering metabolism of single carbon (C) gaseous feedstocks in acetogenic microorganisms are primed to fuel the transition toward environmentally sustainable and cost-efficient production schemes of biofuels and value-added biochemicals. Since acetogens grow under autotrophic energy-limited conditions, protein synthesis is expected to be controlled. This survey integrated publicly available RNA sequencing and ribosome profiling studies of several acetogens, providing data on genome-scale transcriptional and translational responses of , , , and to autotrophic and heterotrophic growth conditions.

View Article and Find Full Text PDF

Carbon dioxide (CO ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H -dependent CO gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes.

View Article and Find Full Text PDF

2-Phenylethanol (2-PE) is a rose-scented aromatic compound, with broad application in cosmetic, pharmaceutical, food and beverage industries. Many plants naturally synthesize 2-PE via Shikimate Pathway, but its extraction is expensive and low-yielding. Consequently, most 2-PE derives from chemical synthesis, which employs petroleum as feedstock and generates unwanted by products and health issues.

View Article and Find Full Text PDF

In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes.

View Article and Find Full Text PDF

Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus (, , , , , , , sp.

View Article and Find Full Text PDF

Gas fermentation provides a promising platform to turn low-cost and readily available single-carbon waste gases into commodity chemicals, such as 2,3-butanediol. Clostridium autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we leveraged constraint-based stoichiometric modeling and kinetic ensemble modeling of the metabolic network to provide a systematic analysis of metabolic engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in dissipated CO.

View Article and Find Full Text PDF

Powered by (sun)light to oxidize water, cyanobacteria can directly convert atmospheric CO into valuable carbon-based compounds and meanwhile release O to the atmosphere. As such, cyanobacteria are promising candidates to be developed as microbial cell factories for the production of chemicals. Nevertheless, similar to other microbial cell factories, engineered cyanobacteria may suffer from production instability.

View Article and Find Full Text PDF

Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. is among the microbial strains with the highest potential for direct production of -butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and tolerance to this solvent is low.

View Article and Find Full Text PDF

Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes.

View Article and Find Full Text PDF

Cyanobacterial cell factories trace a vibrant pathway to climate change neutrality and sustainable development owing to their ability to turn carbon dioxide-rich waste into a broad portfolio of renewable compounds, which are deemed valuable in green chemistry cross-sectorial applications. Cell factory design requires to define the optimal operational and cultivation conditions. The paramount parameter in biomass cultivation in photobioreactors is the light intensity since it impacts cellular physiology and productivity.

View Article and Find Full Text PDF

Background: Plastic plays a crucial role in everyday life of human living, nevertheless it represents an undeniable source of land and water pollution. Polyhydroxybutyrate (PHB) is a bio-based and biodegradable polyester, which can be naturally produced by microorganisms capable of converting and accumulating carbon as intracellular granules. Hence, PHB-producing strains stand out as an alternative source to fossil-derived counterparts.

View Article and Find Full Text PDF

Clostridium cellulovorans is among the most promising candidates for consolidated bioprocessing (CBP) of cellulosic biomass to liquid biofuels (ethanol, butanol). C. cellulovorans metabolizes all the main plant polysaccharides and mainly produces butyrate.

View Article and Find Full Text PDF

We review the TD-WGcluster (time delayed weighted edge clustering) software integrating static interaction networks with time series data in order to detect modules of nodes between which the information flows at similar time delays and intensities. The software has represented an advancement of the state of the art in the software for the identification of connected components due to its peculiarity of dealing with direct and weighted graphs, where the attributes of the physical entities represented by nodes vary over time. This chapter aims to deepen those theoretical aspects of the clustering model implemented by TD-WGcluster that may be of greater interest to the user.

View Article and Find Full Text PDF

The notions of observability and controllability of non-linear systems are a cornerstone of mathematical control theory and cover a wide scope of applications including process design, characterization, monitoring and control. Synthetic biology - which aims to (re)-program living functionalities - and bio-based process engineering - which aims to develop biotechnological manufacturing processes based on industrial and natural living agents - remarkably benefit of methodological improvements inspired to control theory for countless reasons including the huge variety of control mechanisms in living organisms, experimental limitations in terms of measurement feasibility, design of controllers - at single cell or population level - of synthetic production processes and process optimization purposes. Many fundamental problems of control theory such as stabilisability of unstable systems and optimal control may be solved under the assumption that the system is observable/controllable.

View Article and Find Full Text PDF

The choice of the state space representation of a system can turn into a prominent advantage or burden in any endeavour to mathematically model dynamical systems since it entails the analytical tractability of the related modelling formalism and the efficiency of the numerical computation. The Reaction-Based Model (RBM) of the state space, which is presented in this article, is a novel formalization of the kinetics of a system of interacting molecules. According to our representation, the state S of a system of M reactions and N molecular species, is identified with the occurrence of the reaction R ( μ = 1, .

View Article and Find Full Text PDF

Translational stalling of ribosome bound to endoplasmic reticulum (ER) membrane requires an accurate clearance of the associated polypeptides, which is not completely understood in mammals. We characterized in mammalian cells the model of ribosomal stalling at the STOP-codon based on proteins tagged at the C-terminus with the picornavirus 2A peptide followed by a termination codon instead of the Proline (2A*). We exploited the 2A* stalling model to characterize the pathway of degradation of ER-targeted polypeptides.

View Article and Find Full Text PDF

Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins.

View Article and Find Full Text PDF

gathered momentum in modelling studies and biotechnological applications owing to multiple factors like fast growth, ability to fix carbon dioxide into valuable products, and the relative ease of genetic manipulation. physiology and metabolism, and consequently, the productivity of -based photobioreactors (PBRs), are heavily light modulated. Here, we set up a turbidostat-controlled lab-scale cultivation system in order to study the influence of varying orange-red light intensities on growth characteristics and photosynthetic activity.

View Article and Find Full Text PDF

Multiomics experiments are increasingly commonplace in biomedical research and add layers of complexity to experimental design, data integration, and analysis. R and Bioconductor provide a generic framework for statistical analysis and visualization, as well as specialized data classes for a variety of high-throughput data types, but methods are lacking for integrative analysis of multiomics experiments. The MultiAssayExperiment software package, implemented in R and leveraging Bioconductor software and design principles, provides for the coordinated representation of, storage of, and operation on multiple diverse genomics data.

View Article and Find Full Text PDF