Publications by authors named "Angela P Ruffell"

Control of the sheep blowfly relies largely on the use of insecticides applied prophylactically in advance of expected fly activity. However, the blowfly has shown an ability to develop resistance to some of these insecticides. Recent reports of the co-occurrence of resistance to both dicyclanil and imidacloprid in in vitro bioassays with field-collected fly strains has raised the possibility that the two resistances may represent cross-resistance linked by a common mechanism.

View Article and Find Full Text PDF

Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae.

View Article and Find Full Text PDF

Background: The sheep blowfly, Lucila cuprina, is a myiasis-causing parasite responsible for significant production losses and welfare issues for the Australian sheep industry. Control relies largely on the use of insecticides. The pyrimidine compound, dicyclanil, is the predominant control chemical, although other insecticides also are used, including imidacloprid, ivermectin, cyromazine and spinosad.

View Article and Find Full Text PDF

The Australian sheep blowfly, Lucilia cuprina, is an ecto-parasite that causes significant economic losses in the sheep industry. Emerging resistance to insecticides used to protect sheep from this parasite is driving the search for new drugs that act via different mechanisms. Inhibitors of histone deacetylases (HDACs), enzymes essential for regulating eukaryotic gene transcription, are prospective new insecticides based on their capacity to kill human parasites.

View Article and Find Full Text PDF

We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase).

View Article and Find Full Text PDF

The present study used in vitro assays to determine the relative potency of commercial macrocyclic lactone (ML) anthelmintics against larvae of drug-susceptible and drug-resistant Australian isolates of important parasites of sheep and cattle, Haemonchus contortus and Haemonchus placei, respectively. Cattle pour-on products containing abamectin, ivermectin, eprinomectin, doramectin or moxidectin were diluted in DMSO and used in larval development assays. Abamectin was the most potent chemical (lowest IC50 value) towards the drug-susceptible H.

View Article and Find Full Text PDF

While the F200Y SNP in the beta-tubulin gene is most commonly associated with benzimidazole resistance in trichostrongylid nematodes, other SNPs as well as drug efflux pathways have been implicated in the resistance. The relative contributions of all these mechanisms are not understood sufficiently to allow expected drug efficacy to be inferred from molecular data. As a component of developing better means to interpret molecular resistance tests, the present study utilised a drug resistant Haemonchus contortus isolate which possesses two of the principal benzimidazole resistance SNPs (E198A and F200Y) in order to assess the relative degree of resistance conferred by the two SNPs.

View Article and Find Full Text PDF

Macrocyclic lactone (ML) drugs inhibit pharyngeal pumping, motility and egg laying in parasitic nematodes. Previous work has indicated that in vitro effects on worm feeding occurred at lower ivermectin concentrations than effects on worm motility, suggesting that the pharynx musculature was a more important target site for the ML drugs than somatic musculature. We have reassessed this issue of relative sensitivity by examining the response of drug-susceptible and -resistant adult Haemonchus contortus worms to abamectin in vitro using both feeding and motility assays.

View Article and Find Full Text PDF