Publications by authors named "Angela Martinez-Gomez"

Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different.

View Article and Find Full Text PDF

Root-knot nematodes (RKNs, spp.) are obligate plant parasites that constitute a significant pest for agriculture worldwide. They penetrate the plant roots, reducing the uptake of water and nutrients, causing a significant impact on crop yield.

View Article and Find Full Text PDF

The total global food demand is expected to increase up to 50% between 2010 and 2050; hence, there is a clear need to increase plant productivity with little or no damage to the environment. In this respect, biochar is a carbon-rich material derived from the pyrolysis of organic matter at high temperatures with a limited oxygen supply, with different physicochemical characteristics that depend on the feedstock and pyrolysis conditions. When used as a soil amendment, it has shown many positive environmental effects such as carbon sequestration, reduction of greenhouse gas emissions, and soil improvement.

View Article and Find Full Text PDF

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches.

View Article and Find Full Text PDF

To support the search for alternative, nonchemical plant disease control strategies, we present a review of the pathogen-suppressive effects of biochar, a product derived from agricultural and other organic wastes, used as a soil amendment. A wide range of biochar effects contribute to the control of root or foliar fungal pathogens through modification of root exudates, soil properties, and nutrient availability, which influence the growth of antagonist microorganisms. The induction of systemic plant defenses by biochar in the roots to reduce foliar pathogenic fungi, the activation of stress-hormone responses, as well as changes in active oxygen species are indicative of a coordinated hormonal signaling within the plant.

View Article and Find Full Text PDF

spp. are plant-parasitic nematodes that form a very complex pseudo-organ, called gall, which contains the giant cells (GCs) to nourish them. During the last decade, several groups have been studying the molecular processes accompanying the formation of these structures, combining both transcriptomics and cellular biology.

View Article and Find Full Text PDF

The aims of this study were to evaluate the effect of needle bevel position on the degree of pain and damage to the skin covering the vein, in an arteriovenous fistula puncture, in haemodialysis patients. 48 patients with autologous arteriovenous fistula were studied. After puncture the patient was asked about the degree of pain perceived by means of an analogue visual scale and a descriptive verbal scale.

View Article and Find Full Text PDF