Publications by authors named "Angela Madeo"

In this paper, a coherent boundary value problem to model metamaterials' behaviour based on the relaxed micromorphic model is established. This boundary value problem includes well-posed boundary conditions, thus disclosing the possibility of exploring the scattering patterns of finite-size metamaterial specimens. Thanks to the simplified model's structure (few frequency- and angle-independent parameters), we are able to unveil the scattering metamaterial's response for a wide range of frequencies and angles of propagation of the incident wave.

View Article and Find Full Text PDF

In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials.

View Article and Find Full Text PDF

For the recently introduced isotropic-relaxed micromorphic generalized continuum model, we show that, under the assumption of positive-definite energy, planar harmonic waves have real velocity. We also obtain a necessary and sufficient condition for real wave velocity which is weaker than the positive definiteness of the energy. Connections to isotropic linear elasticity and micropolar elasticity are established.

View Article and Find Full Text PDF

In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter.

View Article and Find Full Text PDF