Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage.
View Article and Find Full Text PDFRegulatory T (Treg) cells integrate diverse environmental signals to modulate their function for optimal suppression. Translational regulation represents a favorable mechanism for Treg cell environmental sensing and adaptation. In this study, we carry out an unbiased screen of the Treg cell translatome and identify serum/glucocorticoid-regulated kinase 1 (SGK1), a known salt sensor in T cells, as being preferentially translated in activated Treg cells.
View Article and Find Full Text PDFRegulatory T (Treg) cells are a subset of CD4 T cells that are critical for the maintenance of self-tolerance. The forkhead box transcription factor Foxp3 is a master regulator for the Treg phenotype and function and its expression is essential in Treg cells, as the loss of Foxp3 results in lethal autoimmunity. Two major subsets of Treg cells have been described in vivo; thymus-derived Treg (tTreg) cells that develop in the thymus and peripherally induced Treg (pTreg) cells that are derived from conventional CD4 Foxp3 T cells and are converted in peripheral tissues to cells that express Foxp3 and acquire suppressive ability.
View Article and Find Full Text PDFEos (lkzf4) is a member of the Ikaros family of transcription factors and is preferentially expressed in T-regulatory (Treg) cells. However, the role of Eos in Treg function is controversial. One study using siRNA knock down of Eos demonstrated that it was critical for Treg suppressor function.
View Article and Find Full Text PDFThe transcription factor Helios is expressed in a large percentage of Foxp3 regulatory T (Treg) cells and is required for the maintenance of their suppressive phenotype, as mice with a selective deficiency of Helios in Treg cells spontaneously develop autoimmunity. However, mice with a deficiency of Helios in all T cells do not exhibit autoimmunity, despite the defect in the suppressor function of their Treg cell population, suggesting that Helios also functions in non-Treg cells. Although Helios is expressed in a small subset of CD4Foxp3 and CD8 T cells and its expression is upregulated upon T cell activation, its function in non-Treg cells remains unknown.
View Article and Find Full Text PDFPediatric clinical pharmacy is a growing and evolving field with an increasing number of pediatric clinical pharmacists in academia. In 2017, pediatric practice faculty members represented approximately 7.6% of all pharmacy practice faculty in the United States.
View Article and Find Full Text PDFThe transcription factor Helios is expressed in a large subset of Foxp3 Tregs. We previously proposed that Helios is a marker of thymic derived Treg (tTreg), while Helios Treg were induced from Foxp3 T conventional (Tconv) cells in the periphery (pTreg). To compare the two Treg subpopulations, we generated Helios-GFP reporter mice and crossed them to Foxp3-RFP reporter mice.
View Article and Find Full Text PDFLeukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Non-alcoholic fatty liver disease (NAFLD) affects a large proportion of the US population and is considered to be a metabolic predisposition to liver cancer. However, the role of adaptive immune responses in NAFLD-promoted HCC is largely unknown.
View Article and Find Full Text PDFA subpopulation (60-70%) of Foxp3(+) regulatory T cells (Tregs) in both mouse and man expresses the transcription factor Helios, but its role in Treg function is still unknown. We generated Treg-specific Helios-deficient mice to examine the function of Helios in Tregs. We show that the selective deletion of Helios in Tregs leads to slow, progressive systemic immune activation, hypergammaglobulinemia, and enhanced germinal center formation in the absence of organ-specific autoimmunity.
View Article and Find Full Text PDFEos belongs to the Ikaros family of transcription factors. It was reported to be a regulatory T cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We used mice with a global deficiency in Eos to re-examine the role of Eos expression in both Tregs and conventional T cells (Tconvs).
View Article and Find Full Text PDFActivated T regulatory cells (Tregs) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR.
View Article and Find Full Text PDFFoxp3(+) T-regulatory cells (Tregs) are primarily generated in the thymus (tTreg), but also may be generated extrathymically at peripheral sites (pTreg), or induced in cell culture (iTreg) in the presence of transforming growth factor β (TGFβ). A major unresolved issue is how these different populations of Tregs exert their suppressive function in vivo. We have developed novel systems in which the function of Tregs can be evaluated in vivo in normal mice.
View Article and Find Full Text PDFTreg cells express high levels of the glucocorticoid-induced tumor necrosis factor-related receptor (GITR), while resting conventional T (Tconv) cells express low levels that are increased upon activation. Manipulation of GITR/GITR-Ligand (GITR-L) interactions results in enhancement of immune responses, but it remains unclear whether this enhancement is secondary to costimulation of Tconv cells or to reversal of Treg-cell-mediated suppression. Here, we used a nondepleting Fc-GITR-L and combinations of WT and GITR KO Treg cells and Tconv cells to reexamine the effects of GITR stimulation on each subpopulation in both unmanipulated mice and mice with inflammatory bowel disease.
View Article and Find Full Text PDFFoxp3(+) regulatory T cells (Tregs) maintain self-tolerance and adoptive therapy, and using Foxp3(+) Tregs has been proposed as treatment for autoimmune diseases. The clinical use of Tregs will require large numbers of cells and methods for in vitro expansion of Tregs are being developed. Foxp3(+) Tregs can be divided into 2 subpopulations based on expression of the transcription factor, Helios.
View Article and Find Full Text PDFCYLD is a lysine 63-deubiquitinating enzyme that inhibits NF-κB and JNK signaling. Here, we show that CYLD knock-out mice have markedly increased numbers of regulatory T cells (Tregs) in peripheral lymphoid organs but not in the thymus. In vitro stimulation of CYLD-deficient naive T cells with anti-CD3/28 in the presence of TGF-β led to a marked increase in the number of Foxp3-expressing T cells when compared with stimulated naive control CD4(+) cells.
View Article and Find Full Text PDFAlthough Foxp3(+) regulatory T cells (Tregs) are thought to express autoreactive TCRs, it is not clear how individual TCRs influence Treg development, phenotype, and function in vivo. We have generated TCR transgenic mice (termed SFZ70 mice) using Tcra and Tcrb genes cloned from an autoreactive CD4(+) T cell isolated from a Treg-deficient scurfy mouse. The SFZ70 TCR recognizes a cutaneous autoantigen and drives development of both conventional CD4(+) Foxp3(-) T cells (T(conv)) and Foxp3(+) Tregs.
View Article and Find Full Text PDFMuscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones.
View Article and Find Full Text PDFHelios, a member of the Ikaros transcription factor family, is preferentially expressed at the mRNA level by regulatory T cells (Treg cells). We evaluated Helios protein expression using a newly generated mAb and demonstrated that it is expressed in all thymocytes at the double negative 2 stage of thymic development. Although Helios was expressed by 100% of CD4(+)CD8(-)Foxp3(+) thymocytes, its expression in peripheral lymphoid tissues was restricted to a subpopulation ( approximately 70%) of Foxp3(+) T cells in mice and humans.
View Article and Find Full Text PDFBrucellosis is one of the most common bacterial zoonoses worldwide. Infection is usually chronic and sometimes lifelong. Different mechanisms can be postulated as to the basis for the induction of the chronic status of brucellosis, but a comprehensive knowledge is still lacking.
View Article and Find Full Text PDFThis addition to UNIT 3.12 will describe the assays needed to evaluate CD4.CD25.
View Article and Find Full Text PDFThis unit describes the purification of mouse T cells, B cells, and T cell subsets using magnetic bead separation. Isolation of cell subsets using magnetic beads is quick, simple, and reliable and can result in high yields of very pure cells.
View Article and Find Full Text PDF