Publications by authors named "Angela M S Lezza"

The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein.

View Article and Find Full Text PDF

Diets with an elevated content of fat, sucrose, or fructose are recognized models of diet-induced metabolic alterations, since they induce metabolic derangements, oxidative stress, and chronic low-grade inflammation associated with local and systemic accumulation of advanced glycation end-products (AGEs). This study used four-week-old C57BL/6 male mice, randomly assigned to three experimental dietary regimens: standard diet (SD), high-fat high-sucrose diet (HFHS), or high fructose diet (HFr), administered for 12 weeks. Plasma, heart, and tibialis anterior (TA) skeletal muscle were assayed for markers of metabolic conditions, inflammation, presence of AGEs, and mitochondrial involvement.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the leading liver chronic disease featuring hepatic steatosis. Mitochondrial β-oxidation participates in the derangement of lipid metabolism at the basis of NAFLD, and mitochondrial oxidative stress contributes to the onset of the disease. We evaluated the presence and effects of mitochondrial oxidative stress in the liver from rats fed a high-fat plus fructose (HF-F) diet inducing NAFLD.

View Article and Find Full Text PDF

Functional alterations in irritable bowel syndrome have been associated with defects in bioenergetics and the mitochondrial network. Effects of high fat, adequate-protein, low carbohydrate ketogenic diet (KD) involve oxidative stress, inflammation, mitochondrial function, and biogenesis. The aim was to evaluate the KD efficacy in reducing the effects of stress on gut mitochondria.

View Article and Find Full Text PDF

Calorie restriction (CR) is the most efficacious treatment to delay the onset of age-related changes such as mitochondrial dysfunction. However, the sensitivity of mitochondrial markers to CR and the age-related boundaries of CR efficacy are not fully elucidated. We used liver samples from ad libitum-fed (AL) rats divided in: 18-month-old (AL-18), 28-month-old (AL-28), and 32-month-old (AL-32) groups, and from CR-treated (CR) 28-month-old (CR-28) and 32-month-old (CR-32) counterparts to assay the effect of CR on several mitochondrial markers.

View Article and Find Full Text PDF

The completion of the Special Issue dedicated to "mtDNA and mitochondrial stress signaling in human diseases" requests a final overall look to highlight the most valuable findings among the many presented data [...

View Article and Find Full Text PDF

Celiac disease (CD) presents as chronic low-grade inflammation of the small intestine often characterized by psychiatric comorbidities. The brain-derived neurotrophic factor (BDNF), which we have shown to be reduced in the serum of CD patients, acts as the bridge between immune activation and the nervous system adaptive response. Since has been shown to upregulate BDNF, this study aimed to evaluate whether the administration of GG (L.

View Article and Find Full Text PDF

Mitochondrial oxidative stress accumulates with aging and age-related diseases and induces alterations in mitochondrial DNA (mtDNA) content. Since mtDNA qualitative alterations are also associated with aging, repair of mtDNA damage is of great importance. The most relevant form of DNA repair in this context is base excision repair (BER), which removes oxidized bases such as 8-oxoguanine (8-oxoG) and thymine glycol through the action of the mitochondrial isoform of the specific 8-oxoG DNA glycosylase/apurinic or apyrimidinic (AP) lyase (OGG1) or the endonuclease III homolog (NTH1).

View Article and Find Full Text PDF

While mitochondrial dysfunction is acknowledged as a major feature of aging, much less is known about the role of mitochondria in extended longevity. Livers from aged (28-month-old) and extremely aged (32-month-old) rats were analyzed for citrate synthase activity, mitochondrial transcription factor A (TFAM) amount, mitochondrial DNA (mtDNA), and 4.8 Kb "common deletion" contents.

View Article and Find Full Text PDF

Dietary gliadin may show a broad spectrum of toxicity. The interplay between mitochondria and gliadin-induced oxidative stress has not been thoroughly examined in the intestinal epithelium. In this kinetic study, Caco-2 cells were exposed for 24 h to pepsin-trypsin-digested gliadin, alone or in combination with the antioxidant 2,6-di-tbutyl-p-cresol (BHT), and the effects on mitochondrial biogenesis and mtDNA were studied.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a relevant mechanism in cardiac aging. Here, we investigated the effects of late-life enalapril administration at a non-antihypertensive dose on mitochondrial genomic stability, oxidative damage, and mitochondrial quality control (MQC) signaling in the hearts of aged rats. The protein expression of selected mediators (i.

View Article and Find Full Text PDF

The well-known age-related mitochondrial dysfunction deeply affects heart because of the tissue's large dependence on mitochondrial ATP provision. Our study revealed in aged rat heart a significant 25% decrease in mtDNA relative content, a significant 29% increase in the 4.8 Kb mtDNA deletion relative content, and a significant inverse correlation between such contents as well as a significant 38% decrease in TFAM protein amount.

View Article and Find Full Text PDF

Sarcopenia, the progressive and generalised loss of muscle mass and strength/function, is a major health issue in older adults given its high prevalence and burdensome clinical implications. Over the years, this condition has been endorsed as a marker for discriminating biological from chronological age. However, the absence of a unified operational definition has hampered its full appreciation by healthcare providers, researchers and policy-makers.

View Article and Find Full Text PDF

Sarcopenia is a well-known geriatric syndrome that has been endorsed over the years as a biomarker allowing for the discrimination, at a clinical level, of biological from chronological age. Multiple candidate mechanisms have been linked to muscle degeneration during sarcopenia. Among them, there is wide consensus on the central role played by the loss of mitochondrial integrity in myocytes, secondary to dysfunctional quality control mechanisms.

View Article and Find Full Text PDF

Background: Coeliac disease (CD) is a gluten-sensitive autoimmune disorder. Gluten toxicity encompasses a wide spectrum of target organ functions and pathologies, including the activation of the immune response and triggering of oxidative stress. The aim of this study was to investigate inflammation and the redox balance in patients with active CD, and to evaluate whether alteration of mitochondrial function is involved in the disease status.

View Article and Find Full Text PDF

The complexity of aging is hard to be captured. However, apart from its tissue-specific features, a structural and functional progressive decline of the whole organism that leads to death, often preceded by a phase of chronic morbidity, characterizes the common process of aging. Therefore, the research goal of scientists in the field moved from the search for strategies able to extend longevity to those ensuring healthy aging associated with a longer lifespan referred to as "healthspan".

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial quality control (MQC) involves processes like biogenesis, dynamics, and mitophagy that keep mitochondria functional, and its dysfunction is linked to aging and muscle wasting disorders.
  • Dysfunctional MQC leads to the release of mitochondria-derived damage-associated molecular patterns (DAMPs), which can trigger inflammation similar to how the body responds to pathogens.
  • Recent research suggests that these mitochondrial DAMPs are connected to chronic inflammation in aging and degenerative diseases, and the potential for leveraging this signaling for treating muscle wasting conditions is still being explored.
View Article and Find Full Text PDF

Chemotherapy can cause cachexia, which consists of weight loss associated with muscle atrophy. The exact mechanisms underlying this skeletal muscle toxicity are largely unknown and co-therapies to attenuate chemotherapy-induced side effects are lacking. By using a rat model of cisplatin-induced cachexia, we here characterized the mitochondrial homeostasis in tibialis anterior cachectic muscle and evaluated the potential beneficial effects of the growth hormone secretagogues (GHS) hexarelin and JMV2894 in this setting.

View Article and Find Full Text PDF

Among the complex determinants of aging, mitochondrial dysfunction has been in the spotlight for a long time. As the hub for many cellular functions, the maintenance of an adequate pool of functional mitochondria is crucial for tissue homeostasis. Their unique role in energy supply makes these organelles essential, especially in those tissues strictly dependent on oxidative metabolism.

View Article and Find Full Text PDF

Extremely interesting for aging research are those individuals able to reach older ages still with functions similar to those of younger counterparts. We examined liver samples from ad libitum-fed old (28-month-old, AL-28) and ad libitum-fed very old (32-month-old, AL-32) rats for a number of markers, relevant for mitochondrial functionality and mitochondrial DNA (mtDNA) content. As for the mtDNA content and the protein amounts of the citrate synthase and the antioxidant peroxiredoxin III there were no significant changes in the AL-32 animals.

View Article and Find Full Text PDF

Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions.

View Article and Find Full Text PDF

Background: Mitochondrial Transcription Factor A (TFAM) is regarded as a histone-like protein of mitochondrial DNA (mtDNA), performing multiple functions for this genome. Aging affects mitochondria in a tissue-specific manner and only calorie restriction (CR) is able to delay or prevent the onset of several age-related changes also in mitochondria.

Methods: Samples of the frontal cortex and soleus skeletal muscle from 6- and 26-month-old ad libitum-fed and 26-month-old calorie-restricted rats and of the livers from 18- and 28-month-old ad libitum-fed and 28-month-old calorie-restricted rats were used to detect TFAM amount, TFAM-binding to mtDNA and mtDNA content.

View Article and Find Full Text PDF

Aging affects mitochondria in a tissue-specific manner. Calorie restriction (CR) is, so far, the only intervention able to delay or prevent the onset of several age-related changes also in mitochondria. Using livers from middle age (18-month-old), 28-month-old and 32-month-old ad libitum-fed and 28-month-old calorie-restricted rats we found an age-related decrease in mitochondrial DNA (mtDNA) content and mitochondrial transcription factor A (TFAM) amount, fully prevented by CR.

View Article and Find Full Text PDF

Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.

View Article and Find Full Text PDF