Background: Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation.
View Article and Find Full Text PDFBackground: Water-borne arsenic (As) exposure is a global health problem. Once ingested, inorganic As (iAs) is methylated to mono-methyl (MMA) and dimethyl (DMA) arsenicals via one-carbon metabolism (OCM). People with higher relative percentage of MMA (MMA%) in urine (inefficient As methylation), have been shown to have a higher risk of cardiovascular disease and several cancers but appear to have a lower risk of diabetes and obesity in populations from the US, Mexico, and Taiwan.
View Article and Find Full Text PDFBackground: Arsenic exposure through drinking water persists in many regions. Inorganic As (InAs) is methylated to monomethyl-arsenical species (MMAs) and dimethyl-arsenical species (DMAs), facilitating urinary excretion. Arsenic methylation is dependent on one-carbon metabolism, which is influenced by nutritional factors such as folate and creatine.
View Article and Find Full Text PDFBackground: Posttranslational histone modifications (PTHMs) are altered by arsenic, an environmental carcinogen. PTHMs are also influenced by nutritional methyl donors involved in one-carbon metabolism (OCM), which may protect against epigenetic dysregulation.
Methods: We measured global levels of three PTHMs, which are dysregulated in cancers (H3K36me2, H3K36me3, H3K79me2), in peripheral blood mononuclear cells (PBMC) from 324 participants enrolled in the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults.
Background: Folic acid (FA) supplementation facilitates urinary excretion of arsenic, a human carcinogen. A better understanding of interactions between one-carbon metabolism intermediates may improve the ability to design nutrition interventions that further facilitate arsenic excretion.
Objective: The objective was to determine if FA and/or creatine supplementation increase choline and betaine and decrease dimethylglycine (DMG).